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I. RESEARCH QUESTIONS

In many robotic applications, the encountered data have spe-
cific geometric properties. Examples range from unit quater-
nions to represent orientation to multidimensional arrays found
in sensing and control applications. Of particular interest,
symmetric positive definite (SPD) matrices are widely en-
countered in robotics in the form of manipulability ellipsoids
[21], inertia matrices or sensory information in the form
of spatial covariances [20]. The common practice to apply
machine learning or control algorithms to SPD data is first to
vectorize them, use them in the learning or control process, and
reshaping them back into matrices, possibly requiring post-
processing such as scaling to satisfy the desired geometric
properties of SPD matrices. Such a procedure typically results
in a loss of precision.

In my research, I address the following question: how can
we improve the control and learning in robotics by considering
more tightly the underlying structure and geometry of the data?
For this purpose, the aim is to extend statistical regression
methods so that they handle particular geometries. I focus on
SPD data as they are widely used and necessary in applications
such as manipulability ellipsoids tracking and transfer, or hand
movement tracking from surface electromyography (sEMG)
data, processed as spatial covariances.

II. RESEARCH APPROACH

In order to develop geometry-aware control and learning
methods, we have to consider the fact that the set of D×D
SPD matrices SD++ is not a vector space since it is not closed
under addition and scalar product [15], and thus the use of
classical Euclidean space methods for treating and analyzing
these matrices is inadequate. A compelling solution to handle
this kind of data is to endow these matrices with a Riemannian
metric so that these form a Riemannian manifold. Intuitively,
a Riemannian manifoldM is a mathematical space for which
each point locally resembles a Euclidean space. For each point
x ∈ M, there exists a tangent space TxM equipped with
a positive definite inner product. Back and forth mapping
between the manifold and its tangent space allows a geometric-
aware processing of the data, while keeping classical tools for
processing in the tangent space (an Euclidean space), allowing
us to extend statistical regression methods to SPD data.

Moreover, to exploit the structure of the data and avoid loss
of information due to vectorization of matrices, I explore in my
research how to exploit tensor representations and multilinear
algebra methods. Tensors are generalization of matrices to
arrays of higher dimensions [12], where vectors and matrices

may respectively be seen as 1st and 2nd-order tensors. Tensor
representations permit to represent and exploit a priori data
structure of multidimensional arrays.

In my current work, I exploit Riemannian geometry and
tensor methods to track manipulability ellipsoid in a geometry-
aware control framework. I am also exploring the use of those
tools to generalize existing probabilistic learning methods to
SPD manifold, and exploit them for manipulability ellipsoids
learning and for predicting hand movements from sEMG data
for the control of prosthetic hands.

III. RELATED WORK, CURRENT PROGRESS AND
EVALUATION

The manipulability ellipsoid [21] serves as a geometric
descriptor that indicates the ability to arbitrarily perform
motion and exert a force along the different task directions
in a given joint configuration. Several authors proposed to
use the manipulability ellipsoids to improve trajectory genera-
tion [5, 4, 8, 19]. Note that the aforementioned approaches
do not specify a desired robot manipulability for the task.
Moreover, other approaches proposed to predetermine the
desired robot manipulability to achieve a given task [13, 14].
However, all the aforementioned approaches overlooked an
important characteristic of manipulability ellipsoids, namely,
the fact that they lie on the manifold of SPD matrices. This
may potentially influence the optimal robot joint configuration
for the task at hand.

We propose to address the problem of tracking robot
manipulability ellipsoids from a novel geometry-aware con-
trol perspective. Given a desired profile of manipulability
ellipsoids, the goal of the robot is to adapt its posture to
match the desired manipulability, either as its main task or
as a secondary objective. Our work extends the classical
inverse kinematics problem to manipulability ellipsoids, by
establishing a mapping between a change of manipulability
ellipsoid and the robot joint velocity, which permits to compute
the desired robot joint values that lead the robot to track a
desired manipulability ellipsoid [10]. To do so, we exploit
tensor representation and Riemannian manifolds to obtain a
geometry-aware manipulability tracking controller. This en-
ables the robot to modify its posture so that its manipulability
ellipsoid matches a desired one, either as a main control task or
as a redundancy resolution problem where the manipulability
tracking is viewed as a secondary objective. We showed
that the proposed formulation outperforms previous gradient-
based approaches and provides a faster convergence rate.
Furthermore, we showed that our approach is compatible with
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Fig. 1: (a) Insertion task: the poses of the robot obtained with and
without manipulability tracking are respectively depicted by yellow
and blue dots on the elbow and wrist bend joints. We can see that
the adopted posture is different to let the manipulability coincide as
accurately as possible with the desired force manipulability ellipsoid.
This variation of the joint configuration consequently allows the
robot to adopt a posture compatible with the control force required
by the task (namely, providing sufficient force along the vertical
direction). (b) Desired and reproduced manipulability ellipsoids (in
green and red, respectively) over time, given in seconds. This plot
shows the manipulability ellipsoids match resulting from the proposed
manipulability transfer approach.

statistical methods providing 4th-order covariances, allowing
us to exploit task variations to characterize the precision of the
manipulability tracking problem, with stronger tracking along
low variability directions. We evaluated the performance of
the proposed geometry-aware manipulability controller in two
different scenarios, namely, a pushing task and a peg-in-hole
task (plugging an electric cable into an power socket), achieved
by the 7-DoF arm of the Baxter robot (see Fig. 1a).

In the context of learning in robotics, Gaussian mixture
regression (GMR) [6] is a widely used method to generate
robot motions [3], that provides a fast and efficient way to
estimate multivariate output data from multivariate input data
in the form of Gaussian distributions with full covariances.
It exploits the Gaussian conditioning property to estimate
the distribution of output data given input data, from the
joint distribution of input and output datapoints estimated by
a Gaussian mixture model (GMM). The approach does not
learn the regression function directly, but instead relies on
the learned joint distribution. Several publications presented
methods for regression from a mixture of Gaussians on Rie-
mannian manifolds, although they only partially exploit the
manifold structure in Gaussian conditioning [18, 11, 17, 23].
The probabilistic encoding using Gaussians was extended to
Riemannian manifolds with data represented in vector form
in [22]. Based on this work, we extended the formulations
of GMM and GMR to data in the form of SPD matrices, by
exploiting tensor methods to characterize the (co)variability of
2nd-order tensors by a 4th-order covariance tensor and Rie-
mannian geometry tools to consider the underlying geometric
properties of SPD data [9, 16].

We experimented this approach to transfer manipulability
ellipsoids to robots, allowing them to modify their posture in
function of the task, and in the context of prosthetic hands,
with the goal of identifying wrist movements from spatial

Fig. 2: Comparison between the wrist movements predicted by GMR
on SPD manifold (blue line) and GMR in Euclidean space (green line)
during a transition from wrist supination to rest. The reference is the
black line. We can see that GMR on SPD manifold is more efficient
at predicting a transition than GMR in Euclidean space, which tends
to favor rest poses in most of the cases.

covariance features acquired by surface electromyography. The
first problem is casted as a manipulability transfer between
a teacher, who demonstrates how to perform a task with
a desired time-varying manipulability profile, and a learner
who reproduces the task by exploiting its own redundant
kinematic structure so that its manipulability ellipsoid matches
the demonstration [16]. This approach offers the possibility
of transferring posture-dependent task requirements such as
preferred directions for motion and force exertion in oper-
ational space, which are encapsulated in the demonstrated
manipulability ellipsoids (see Fig. 1b). The second application
exploits our learning approach to identify wrist movements
corresponding to sEMG data in the form of spatial covari-
ances [9]. The proposed method was tested on data from the
publicly available Ninapro database [1], comprising recordings
from 40 able-bodied subjects. We compared our geometry-
aware formulation of GMR with the standard approach in
Euclidean space. It improved the detection of wrist movement
for most of the subjects and proved to be efficient to detect
transitions between movements (see Fig. 2).

IV. FUTURE WORK

As future work, we plan to combine our manipulability
tracking control approach with learning from demonstration
techniques, using the developed manipulability transfer frame-
work. We will explore the use of our formulation in more
complex tasks involving full 6D manipulability ellipsoids,
and scenarios where a humanoid robot is required to track
a manipulability ellipsoid defined at either its center of mass
or zero-moment point [2, 7]. The tasks of interest will be those
in which velocity and force control requirements vary over the
course of the task execution, which will be directly related to
changes in the velocity/force manipulability ellipsoids.

In the context of prosthetic hands, we will extend the
regression problem to fingers movements. We also envisage to
exploit the 4th-order covariance information retrieved by GMR
to regulate how precisely the hand movement is predicted and
should be matched. We plan more extensive evaluation in real-
time as well as tests of the approach with amputated patients.
Finally, we plan to extend the proposed regression method to
other Riemannian manifolds that could be exploited for data
with specific underlying structure and geometry in robotics.
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