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Abstract

Humans exhibit outstanding learning and adaptation capabilities while performing
various types of manipulation tasks. When learning new skills, humans are able to
extract important information by observing examples of a task and efficiently refine a
priori knowledge to master new tasks. However, learning does not happen in isolation,
and the planning and control abilities of humans also play a crucial role to properly
execute manipulation tasks of varying complexity. In the last years, a lot of attention
has been devoted to the problem of providing robots with close-to-human-level abilities.
In this context, this thesis proposes to enhance robot learning and control capabilities
by introducing domain knowledge into the corresponding models. Our approaches,
built on Riemannian manifolds, exploit the geometry of non-Euclidean spaces, which are
ubiquitous in robotics to represent rigid-body orientations, inertia matrices, manipulability
ellipsoids, or controller gain matrices.

We initially consider the problem of transferring skills to a robot and propose a probabilis-
tic framework to learn symmetric positive definite (SPD) matrices from demonstrations.
Given a learned reference trajectory in the form of SPD matrices, the goal of the robot is to
reproduce the task by tracking this sequence using appropriate controllers. This challenge
is tackled in the second part of this thesis. We focus on a specific application and propose
a complete geometry-aware framework to learn, control and transfer posture-dependent
task requirements from humans to robots via manipulability profiles. The third part of
this thesis focuses on refining the skills learned by the robot and on adapting them to new
situations by introducing a geometry-aware Bayesian optimization framework. Overall,
this thesis proves that geometry-awareness is crucial for successfully learning, controlling
and refining non-Fuclidean parameters in addition to providing a proper mathematical
treatment of the different problems. Finally, the last part of this work shows that domain
knowledge can be introduced not only through geometry-awareness, but also through
structure-awareness, which may be considered either as prior models or as intrinsically
present in the data. With its final part, this thesis emphasizes that domain knowledge,
that can be introduced into robot learning algorithms through various means, may be
significant for providing robots with close-to-humans abilities.

Keywords: Robot learning, Riemannian manifolds, Domain knowledge, Learning from
demonstrations, Bayesian optimization, Manipulability ellipsoids, Tensor methods.
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Résumé

Les humains exhibent d’impressionnantes capacités d’apprentissage et d’adaptation
lorsqu’ils effectuent différentes taches de manipulation. Lorsqu’ils apprennent de nouvelles
compétences, les humains sont capables d’extraire les informations importantes en
observant des exemples d’une tache et d’affiner efficacement leurs connaissances a priori
pour maitriser de nouvelles taches. Cependant, I’apprentissage ne se passe pas de maniere
isolée et les capacités de planification et de controle des humains jouent également un role
crucial pour exécuter correctement des tadches de manipulation de complexité variable.
Ces dernieres années, une attention particuliere a été dévolue au probleme de pourvoir les
robots de capacités proches de celles des humains. Dans ce contexte, cette thése propose
d’améliorer les capacités d’apprentissage et de contrdle des robots en introduisant des
informations de domaine dans les modeles correspondants. Nos approches, construites
a ’aide de variétés riemanniennes, exploitent la géométrie des espaces non euclidiens,
omniprésents en robotique pour représenter ’orientation de corps rigides, les matrices
d’inerties, les ellipses de manipulabilité ou les matrices de gains de controleurs.

Nous considérons initialement le probleme consistant & transférer des compétences a un
robot et proposons une approche probabiliste pour apprendre des matrices symétriques
positive définies (SPD) par démonstrations. Etant donné une trajectoire de référence
apprise sous la forme de matrices SPD, le but du robot est de reproduire la tache en
suivant cette séquence avec des controleurs appropriés. Ce défi est relevé dans la deuxieme
partie de cette these. Nous nous concentrons sur une application spécifique et proposons
une approche complete tenant compte de la géométrie pour apprendre, controler et
transférer des contraintes de taches qui dépendent de la posture d’humains a des robots
via des profils de manipulabilité. La troisieme partie de cette thése se concentre sur
I’affinage de compétences apprises par le robot et sur ’adaptation de ces compétences
pour de nouvelles situations en introduisant une méthode d’optimisation bayésienne
tenant compte de la géometrie. En résumé, cette thése montre que les méthodes tenant
compte de la géométrie sont cruciales pour apprendre, contrdler et affiner fructueusement
les parametres non euclidiens, en plus de traiter les différents problemes avec des outils
mathématiques appropriés. Finalement, la derniére partie de ce travail montre que des
informations de domaine peuvent étre introduites non seulement a travers la géométrie,
mais aussi a travers la structure, qui peut étre considérée sous la forme de modeles a
priori ou comme intrinséquement présente dans les données. Avec cette derniere partie,
cette these souligne que les informations de domaine, pouvant étre introduites dans les



Résumé

algorithmes d’apprentissage de différentes manieres, pourraient étre significatives pour
pourvoir les robots de capacités proches de celles des humains.

Mots-clés : Apprentissage robotique, Variétés riemanniennes, Informations de domaine,

Apprentissage par démonstrations, Optimisation bayésienne, Ellipses de manipulabilité,
Méthodes tensorielles.
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Introduction

1.1 Motivation

When we learn to execute a novel manipulation task, we naturally shape our behavior
in function of our a-priori knowledge and experience of the given task. In this process,
we shape our gestures to mimic these of people that we may have seen executing —
successfully or not — similar tasks and integrate it to our own experience in manipulating
different objects. As a matter of fact, we might first fail at executing the given task;
in this case, we are able to update our understanding of the problem and our gestures
in order to achieve our goal, usually after only few trials. However, successful learning
would not be possible without efficient perception, planning and control abilities. Indeed,
at each instant of a manipulation task, we naturally adapt the motion and strength of
our arms and body to make them compatible with both the available information about
the task and our instantaneous perception of the environment. To do so, our brain is able
to deal with various external parameters, such as rigid-body positions and orientations,
forces or objects inertias, and to trigger an appropriate reaction from our body through
limb motions and force exertions. In that sense, our brain may be seen as a geometric
machine, transforming sensory information into motor commands [Pellionisz and Llinds,
1985; Habas et al., 2020].

One of the main requirements for robots to be endowed with close-to-human abilities
is the capability to learn new skills. To do so, inspiration has been taken from the
ways human learn and various robot learning methods have been developed in the past
years. In this context, the two main research directions in robot learning are learning
from demonstrations (LfD), where the robot learns by observing and generalizing expert
demonstrations [Billard et al., 2008; Ravichandar et al., 2020] and reinforcement learning
(RL), where the robot learns through trial and error [Deisenroth et al., 2013; Sutton
and Barto, 2018]. Similarly to humans, when learning a new skill, robots should be able
to cope with a profusion of external information and learn to execute the appropriate
motions to fulfill the task. As an example, for manipulation tasks, the robot learns how
to position and orient its end-effector in order to manipulate different objects. Moreover,
it may need to learn to apply certain forces while interacting with the environment and
to adapt the stiffness of its joints to be resistant to perturbations or, in the contrary, to
be compliant to guarantee safe interactions with the user [Rozo et al., 2016; Silvério et al.,
2018]. In other cases, the robot should be able to place not only its end-effector, but also
its other joints, to avoid collisions in a cluttered environment [Rana et al., 2017a], or
to adapt the optimal directions in which to generate a motion or apply a specific force,
e.g., in a planning process [Lee and Oh, 2016; Gu et al., 2015]. Therefore, a variety of
manifolds arise during the process of a robot learning new manipulation skills; positions,
forces and torques belong to the Euclidean manifold R?, stiffness, inertia, manipulability
and controller gain matrices lie in the manifold of symmetric positive definite (SPD)
matrices S?

.
represent orientations, and the special Euclidean group SF(3) describes robot poses.

the special orthogonal group SO(3) or the unit sphere S? are used to



1.1. Motivation

In this context, training data — collected during the demonstration phase in LfD and
arising from previous trials in RL — may belong to one or several of these manifolds.
While Euclidean data are automatically encoded and retrieved by classical learning
algorithms, special care must be taken with non-Euclidean variables. Indeed:

1. The shortest paths between two points does not usually follow a straight line in
curved spaces, therefore modifying the relationships between data compared to
these in Euclidean spaces — for example, the distance between two points on a
ball is naturally measured along its surface instead of through the ball;

2. The outputs retrieved by a learning algorithm must be restricted to the set of
points belonging to the corresponding manifold.

Figure 1.1 illustrates these concepts for the unit-sphere and SPD manifolds. For both
manifolds, the Euclidean path linking two points & and vy is represented with a blue line.
In the case of the sphere, this path intersects with the sphere surface only at & and y and
is therefore not suited to measure the distance between or retrieve data based on these
two points, e.g., via interpolation or extrapolation. The situation is slightly different in
the case of the SPD manifold, as the Euclidean blue line remains in the manifold from
X to Y. Therefore, it could potentially be used to measure distances between elements
on the manifold. However, as illustrated in Figure 1.1, straight lines are generally not
embedded in the manifold, therefore leading to invalid outputs if these paths are used to
extrapolate new points from known data. In contrast, the paths obtained by taking the
intrinsic geometry of these non-Euclidean spaces into account, depicted as red curves,
are suited both to measure distances and to retrieve data.

Treating data that do not lie on a vector space with Euclidean methods leads not only to
incorrect paths that may not belong to the manifold, but also to ill-conditioned behaviors
in many situations. As a first simple example, we consider the computation of the mean
of three points on the unit sphere, as illustrated in Figure 1.2a. The Euclidean mean,
represented by a blue dot, does not lie on the unit-sphere and therefore must be projected
to the manifold as a post-processing step. Importantly, we observe that the resulting
projection does not correspond to the intrinsic mean =, depicted by a red dot, obtained
by considering the intrinsic geometry of the data. Moreover, the obtained Euclidean mean
depends on the coordinate system used to represent the data: the Cartesian mean Eg is
not equivalent to the mean Eg obtained with spherical coordinates (yellow dot), which
lies outside the support of the data. In order to avoid this problem, we aim at developing
coordinate-invariant algorithms, which may naturally be obtained by considering the
intrinsic geometry of non-Euclidean variables [Biess et al., 2011; Lee and Park, 2018;
Park et al., 2018]. As a second example, we consider the mean of two SPD matrices



Introduction

¥ & v
3 >
(a)

Figure 1.1 — Ilustrations of two non-Euclidean parameter spaces arising in robotics,
namely (a) the unit sphere, used to represent orientations, and () the SPD manifold,
used to represent, among others, stiffness matrices. (a) Unit vectors correspond to points
in the surface of the sphere. (b) Each point in the graph represents a symmetric matrix
(%; %; ) SPD matrices corresponds to the points inside the cone. For both spaces, the
Euclidean shortest path passing through @ and vy is represented as a blue line. Note
that, unlike the geometry-aware path (depicted in red), this line is not embedded in the
manifold.
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Figure 1.2 — Examples of ill-conditioned behaviors arising while ignoring the intrinsic
geometry of non-Euclidean parameter spaces. (a) Computation of the mean of three
points (black dots) on the unit sphere S?. The Euclidean mean depends on the choice of
coordinate system: the Euclidean mean based on Cartesian coordinates Eg (blue dot)
does not correspond to the Euclidean mean in spherical coordinates Eg (yellow dot). In
contrast, the intrinsic mean =4, depicted with a red dot, takes the geometry of the data
into account and therefore is coordinate invariant. (b) Interpolation between two SPD
matrices X; and X9, whose volume is identical. The geometry-aware path, depicted by
a red curve, consistently preserves the volume of the ellipsoids. In contrast, this volume
is considerably increased while following the Euclidean path, represented by a blue line.
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whose volume is identical, i.e., det(X7) = det(X2) = 36. As shown in Figure 1.2b, the
intrinsic mean By = (§ Q) differs from the Euclidean mean Eg = (¥ ). Moreover,
while the geometry-aware path, including the intrinsic mean, consistently preserves the
determinant, this is not conserved along the Euclidean path. Consequently, the volume
of the Euclidean mean, proportional to det(Zg) = 100, is considerably varied compared
to that of the data. In robotics, it is particularly important that the volume of SPD
data evolves in a consistent manner, e.g., when designing stable controllers. Therefore, in
order to properly learn and control non-Fuclidean variables independently of the choice
of coordinates, the intrinsic geometry of these non-Euclidean spaces must be taken into

account.

Many robotics parameters lie on non-Euclidean spaces and the particular geometry of
these spaces is often known. The special orthogonal group SO(3) and the special Euclidean
group SE(3) are well-studied instances of Lie groups [Park, 1995; Selig, 2005; Sola et al.,
2018], while the unit-sphere and SPD manifolds can be endowed with a Riemannian
metric to form instances of Riemannian manifolds [do Carmo, 1992; Lee, 2012; Pennec
et al., 2019]. In this thesis, we focus on robotic parameters lying on Riemannian
manifolds and propose to take their geometry into account via the introduction of domain
knowledge into robot learning and control algorithms. To do so, we exploit Riemannian
manifolds theory and tensor representations to build geometry-aware learning, control
and optimization schemes. The main contributions of this thesis are the followings: (7)
we provide a detailed analysis of human arm motion patterns in industry-like activities
encoded via manipulability ellipsoids; (ii) we propose a geometry-aware probabilistic
framework to learn SPD matrices from demonstrations; (7i7) we consider the problem of
tracking manipulability ellipsoids from a control perspective and develop geometry-aware
manipulability tracking controllers; (iv) we combine the aforementioned learning and
tracking approaches into a complete human-to-robot manipulability transfer framework;
(v) we introduce a novel geometry-aware Bayesian optimization (GaBO) framework for
refining and optimizing parameters lying on Riemannian manifolds; (vi) we scale GaBO
towards high-dimensional structured parameter spaces; (vii) we introduce a novel model-
based Gaussian process, where domain knowledge is incorporated in the form of a prior
model; (viii) we propose a tensor-variate-mixture-of-experts model for regression, which
takes the intrinsic structure of the data into account. Finally, we demonstrate throughout
the thesis that levering geometry-awareness into robot learning, control and optimization
may not only bring mathematical correctness but greatly benefit the performances of
different approaches in terms of accuracy, stability, convergence and scalability.

1.2 Thesis Objectives and Outline

This thesis is organized in four main parts. Each part is composed of two chapters aiming
at solving a specific challenge. The objective of each part is described below, along with a
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1.2. Thesis Objectives and Outline

brief overview of the content of each chapter. The outline of the thesis is also highlighted
in Figure 1.3.

Part I: Geometry-aware Learning from Demonstrations

After introducing the main mathematical tools, methods and algorithms that will be used
in the core of this thesis (Chapter 2), we first consider the problem of transferring skills to
a robot based on experts demonstrations. In particular, we aim at complementing existing
approaches to encode position, force and orientation data, and propose a probabilistic
framework to learn SPD matrices from demonstrations in Chapter 3. To do so, we
exploit statistical tools adapted to Riemannian manifolds and tensor methods and encode
demonstrated sequences of SPD matrices with a Gaussian mixture model (GMM). A
distribution of SPD trajectories can then be retrieved via conditioning of the geometry-
aware GMM. We then focus on a specific application in Chapter 4. More precisely, based
on the observation that humans are able to plan their limbs motion in anticipation of
the execution of specific skills, we propose to analyze human arms motion patterns in
industrial activities. To do so, we build our analysis on the so-called manipulability
ellipsoid, which captures a posture-dependent ability to perform motion and exert forces
along different task directions. Finally, we show how manipulability patterns in the form
of SPD matrices can be learned by robots based on the probabilistic model presented in
Chapter 3.

Part II: Designing Geometry-aware Controllers

Given a learned reference trajectory in the form of SPD matrices, the goal of the robot is to
reproduce the task by tracking this sequence using appropriate controllers. Therefore, the
objective of the second part of this thesis is to endow robots with controllers adapted to the
tracking of SPD matrices. Chapter 5 presents a geometry-aware tracking control scheme in
which the robot is requested to follow a desired profile of manipulability ellipsoids, either
as its main task or as a secondary objective. By coupling the aforementioned controllers
with the learning scheme presented in the first part of this thesis, a complete geometry-
aware framework to learn, control and transfer posture-dependent task requirements
from human to robots via manipulability profiles is introduced in Chapter 6.

Part III: Geometry-aware Policy Optimization

After learning a skill from demonstrations, it is often desirable that the robot is able
to refine or adapt this skill to a new situation. In the third part of this thesis, we
aim at developing an approach to refine, adapt and optimize parameters lying on
Riemannian manifolds. To do so, we propose to utilize Bayesian optimization (BO),
an approach that recently became popular in robotics to optimize control parameters
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and parametric policies in direct reinforcement learning due to its data efficiency and
gradient-free approach. However, its performance may be seriously compromised when
the parameter space is of high dimension. In Chapter 7, we hypothesize that bringing
geometry-awareness into BO may improve its performance and scalability. We introduce
the geometry-aware BO (GaBO) framework, that incorporates domain knowledge into
BO via geometry-awareness. Following this line, we further extend GaBO to handle
high-dimensional Riemannian manifold spaces in Chapter 8.

Part IV: Leveraging Structure-awareness in Robot Learning

The objective of the last part of this thesis is to investigate the concept of bringing domain
knowledge into learning algorithms from a broader perspective. We hypothesize here that
domain knowledge can benefit robot learning by introducing not only geometry-awareness,
but structure-awareness into the algorithms. In Chapter 9, structure-awareness is viewed
through the incorporation of prior models into a non-parametric learning approach.
More specifically, we propose a novel multi-output Gaussian process (GP) based on
a GMM model and show that structure-awareness allows the proposed algorithm to
outperform its individual components. Finally, Chapter 10 considers problems where
an intrinsic structure exists within the data. Namely, we introduce a mixture-of-experts
model handling high-dimensional data in the form of matrices and tensors. The proposed
algorithm is applied in the context of prosthetics hands to recover hand motions from
myographic signals.

The importance and benefits of geometry-awareness in our approaches are highlighted
throughout the three first part of this thesis. We prove that geometry-awareness is
crucial for successfully learning, controlling and refining non-Euclidean parameters in
addition to providing a proper mathematical treatment of the different problems tackled
in this thesis. Overall, this thesis shows that including domain knowledge via geometry-
awareness and structure-awareness contribute to enhance robot learning capabilities in
various applications. The publications, supplementary material and source codes related
to the content presented in this thesis are emphasized at the beginning of each chapter.



] Background

The aim of this chapter is to introduce the mathematical tools, methods and algorithms
that will be used to form the models and solutions to the problems tackled in this thesis.
Riemannian manifolds, tensor operations and two learning algorithms are introduced. Following
this background chapter, the Chapters 3-10, constituting the core of this thesis, will present

approaches for robots to learn and refine skills while exploiting domain knowledge via geometry-
and structure-awareness.
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Chapter 2. Background

2.1 Introduction

We start this thesis by introducing the required mathematical tools for enhancing learning,
control and optimization algorithms with geometry- and structure-awareness. As we
aim at designing approaches that can efficiently handle non-Euclidean parameters such
as rigid-body orientations, inertia matrices, manipulability ellipsoids, or controller gain
matrices, we first introduce the basic theory on Riemannian manifolds. In order to handle
multidimensional data, a brief introduction on tensor representations and operations is
presented next. Finally, the two main learning algorithms used throughout this thesis
are described. Each of these topics has been widely covered in the literature. Only brief
overviews are provided in this chapter, as we aim here at providing the intuition and the
necessary mathematical tools for the applications covered in this thesis. More in-depth
references are provided for each topic in the related sections.

For the reader interested in specific chapters of the thesis, the background sections related
to each chapter are highlighted below.

-

Chapter Background sections
3: Gaussian Mixture Model on the SPD manifold 2.2,2.3.2,23.3, 24.1
4: Learning Task-dependent Requirements via Manipulability Analysis 2.2,232,233,24.1
5: Tracking Manipulability Ellipsoids 22,232,234
6: A Human-to-robot Manipulability Transfer Framework 2.2
7: GaBO: Geometry-aware Bayesian Optimization 2.2,24.2
8: Handling High-dimensional Problems with GaBO 2.2,24.2
9: A Model-Based Gaussian Process 2.4.1, 2.4.2
10: Exploiting Tensor Structures in a Mixture of Experts 2.3.2
N J

2.2 Riemannian Manifolds

In robotics, diverse types of data do not belong to a vector space and thus the use of
classical Euclidean space methods for treating and analyzing these variables is inadequate.
A common example is the unit quaternion, widely used to represent orientations. The
quaternion has unit norm and therefore can be represented as a point on the surface
of a 3-sphere. More generally, many data are normalized in a preprocessing step to
discard superfluous scaling and hence are better explained through spherical representa-
tions [Fisher et al., 1987]. Symmetric positive definite (SPD) matrices are also widely
used in robotics in the form of stiffness and inertia matrices, manipulability ellipsoids, or
controller gain matrices. In general, SPD matrices are also widely encountered in data
science: They coincide with the covariance matrices of multivariate distributions and are

10
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used as descriptors in many applications, such as computer vision [Tuzel et al., 2006] and
brain-computer interface classification [Barachant et al., 2012]. For a mathematically
consistent treatment of their particular geometry, both the sphere and the space of SPD
matrices can be endowed with a Riemannian metric to form Riemannian manifolds.

A very simplistic way to deal with manifold-valued data is to consider them as if they
were Euclidean and to apply classical algorithms augmented with a post-processing
step to ensure the validity of the outcomes. However, this may lead to inconsistent
behaviors, and to poor performance in practice. After a brief overview of the use of
manifolds in robotics, the mathematical tools allowing a sound treatment of data lying
on Riemannian manifolds are introduced in this chapter. The benefits of considering the
intrinsic geometry of these data will be further demonstrated throughout this thesis. For
thorough introductions to differential geometry and Riemannian manifolds, we refer the
interested reader to the following books [do Carmo, 1992; Jost, 2008; Lee, 2012; Pennec
et al., 2019].

2.2.1 Riemannian Manifolds in Robotics

Lie group and Riemannian manifold theories have been successfully applied to robotics
from early on, for example in robot design [Park, 1995] or robot kinematics and dynamics
analysis [Selig, 2005]. However, they only gained interest recently in robot learning,
control and optimization. In particular, the usage of Lie group theory for motion or
state estimation in robotics significantly increased in the last years. In this context,
geometric methods improved the performance of estimation algorithms in terms of
precision, stability and consistency, e.g., in the fields of visual odometry [Forster et al.,
2017], Kalman filtering and simultaneous localization and mapping (SLAM) [Chirikjian
and Kobilarov, 2014; Barfoot and Furgale, 2014], among others.

Riemannian manifold theory has also been exploited in robotic applications for motion
and path planning. Notably, Zucker et al. [2013] introduced the covariant Hamiltonian
optimization for motion planning (CHOMP) algorithm, which exploits the invariance
properties of Riemannian manifolds to efficiently plan high-quality trajectories in cluttered
environments. Along a similar line, Ratliff [2013] proposed to leverage the underlying
geometry of the environment for planning and control applications by learning the
Riemannian metric characterizing the configuration space. As another example, Bhat-
tacharya et al. [2014] introduced a control law for the multi-robot coverage problem on
Riemannian manifolds with boundaries, which can also be applied to coverage problems
in unknown environments.

In the context of robot motion generation, Ratliff et al. [2018] introduced Riemannian
motion policies (RMPs), where a robot motion policy is associated with a Riemannian
metric that defines its local geometry. RMPs describe a virtual dynamical system, whose

11
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inertia correspond to the metric tensor, under the influence of a damped virtual potential
field. Following this work, Rana et al. [2019] proposed an approach to learn RMPs from
human demonstrations, where the potential field and Riemannian metric are estimated
from the demonstrated robot motions. Notice that this approach is deterministic, so that
the learned trajectories do not reflect neither the aleatoric, nor the epistemic uncertainty
of the demonstrations.

Another line of research consists of exploiting the intrinsic geometry of parameters lying
on Riemannian manifolds, whose geometry is known a priori. In this thesis, we follow
this research path and propose to take into account the geometry of robotics parameters
lying on Riemannian manifolds in robot learning, optimization and control. In particular,
the work of Zeestraten [2018] is closely related to this line, as the author proposed a
learning-from-demonstrations framework based on Riemannian manifold theory to encode

and retrieve the orientation of the robot end-effector, represented as a unit quaternion.

2.2.2 Riemannian Manifolds Theory

A d-dimensional manifold M is a topological space which is locally Euclidean, which
means that each point in M has a neighborhood which is homeomorphic to an open subset
of the d-dimensional Euclidean space R%. A Riemannian manifold M is a differentiable
manifold equipped with a Riemannian metric. For each point x € M, there exists a
tangent space T, M which is formed by the tangent vectors to all 1-dimensional curves on
M passing through x. The origin of the tangent space coincides with . The Riemannian
metric is a smoothly-varying positive-definite inner product (-, )z : Tz M X TepM — M
acting on T M. The norm of a vector u € TpM is denoted by ||ul|2 = (u,u);. Given
a choice of local coordinates, a metric is represented by a SPD matrix G(x), called a
metric tensor, whose coefficients depend smoothly on . Therefore, the inner product of
two vectors u, v € T M can equivalently be written as

(u,v)g = (u, G(x)v). (2.1)

Curve length and geodesics

The Riemannian metric leads to local expressions of distances and angles between curves.
Therefore, this characterization of the manifold can further be exploited to compute
the length of curves on M. Specifically, the length [ of a curve s(¢) on a Riemannian
manifold is given, following the classical arc-length formulation, as

st = [ 180l 22)

12
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The Riemannian distance between two points x,y € M is defined as the minimum length
over all possible smooth curves on the manifold between « and y, i.e.,

dm(z, y) = Iﬁgll (s()) - (2.3)
The corresponding curve is called a geodesic. Geodesics are the generalization of straight
lines to Riemannian manifolds, as they are locally length-minimizing curves with constant
speed in M. These definitions are illustrated in Figure 2.1b, where the sphere manifold
S? = {x € R3: xTx = 1} is represented in its embedding space R®. The manifold S? is
composed of all the points lying on the surface of the 2-sphere. The tangent space 7,S?
is the 2-plane tangent to the sphere at . The shortest path between two points @ and y
on the sphere is the geodesic represented as a red curve. Note that it differs from the
Euclidean shortest path, depicted in blue, that does not lie on the manifold.

Coordinate invariance

Importantly, the geometric constructions defined via the Riemannian metric on a Rie-
mannian manifold — e.g., the length of a curve, the angle between a pair of curves,
the area of a piece of surface, or the geodesics — do not depend on the choice of local
coordinates and thus can be written in a coordinate-invariant form. This can be explained
by the transformation behavior of the Riemannian metric under coordinate changes.
Namely, the Riemannian metric encompasses the transformation rules between different
sets of coordinates. To illustrate this point, we compute the coordinate expression for the
Euclidean metric on R? in polar coordinates. Given a curve (z1(t), x2(t)), the incremental
arc length corresponds to dz? + dz3. By substituting x7 = r cos(f) and xo = 7sin(), we
obtain

da? + dx3 = d(r cos())* + d(rsin(0))?
= (cos(0)dr — rsin(0)d)* + (sin(0)dr + r cos(h)do)?
= dr® + r*d6”.
So, the Riemannian metric tensor is expressed as G(z) = (}9) in Euclidean coordinates
and as G(x) = (1 9 ) in polar coordinates. Therefore, the Riemannian formulation

0r?
allows us to develop coordinate-invariant algorithms whose performance is not influenced

by a specific choice of coordinates.

Exponential map, Logarithm map and parallel transport

A Riemannian manifold is not a vector space since it is not closed under addition and
scalar product [Pennec et al., 2006], and thus the use of classical Euclidean space methods
for treating and analyzing data lying on this manifold is inadequate. However, due to

13
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their Euclidean geometry, linear algebra operations can be performed on the elements of
each tangent space of a manifold. Therefore, these tangent spaces can be used not only
to perform operations and interpolate between manifold-valued data, but to compute
statistics on Riemannian manifolds. They are thus essential to generalize algorithms
working on Euclidean space to Riemannian manifolds. To utilize these Euclidean tangent
spaces, we need mappings back and forth between 7, M and M, which are known as
exponential and logarithmic maps. The exponential map Exp, : T, M — M maps a
point w in the tangent space of & to a point y on the manifold, so that it is reached
at time 1 by the geodesic starting at « in the direction u, i.e., dpm(x,y) = ||u||z. The
inverse operation is called the logarithmic map Log, : M — Tz M. The exponential and
logarithmic maps are illustrated for the manifold S? in Figure 2.2b.

When working with data on Riemannian manifolds, we may need to compare or combine
vectors lying on different tangent spaces. For example, in the conjugate gradient descent
algorithm on Riemannian manifold exploited in Chapter 7, the search direction is updated
by adding the gradient of the function to the previous search direction. However, these
two vectors lie on two different tangent spaces, namely on the tangent spaces of the
current and of the previous minimum estimates, while they must belong to the same
space to be properly combined. Therefore, another useful operation over manifolds is the
parallel transport I'y_sy : T M — Ty M, which moves elements between tangent spaces
such that the inner product between two elements in the tangent space remains constant,
ie., (v1,v2)z = (Tzmy(v1), [asy(v2))y. This implies that the angle between a vector in
the tangent space and the direction of the geodesic connecting @ to y is also conserved.
The notion of parallel transport is illustrated in Figure 2.2c.

Product of Riemannian manifolds

Importantly, the Cartesian product of two Riemannian manifolds corresponds to a
Riemannian manifold. Specifically, the product M; x My of the manifolds M; and
My is composed of the set of pairs (a1, x2), where 1 € M; and &3 € Ms. This
property allows us to jointly treat data belonging to different Riemannian manifolds.
In particular, it can be exploited to define joint distributions on any combination of
manifolds. For example, the pose of a robot is often represented by a position and
a quaternion. Therefore, we may define joint distribution of poses on the product of
manifolds R? x S3. Notice that the Riemannian metric of a product of manifolds is
built from the Riemannian metrics of the individual manifolds, so that the metric tensor
corresponds to the block diagonal matrix

G(x1, x3) = (G(Owl) G(‘;)) , (2.4)

14
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Table 2.1 — Principal operations on the sphere S¢ and SPD manifold Si + (see [Absil
et al., 2007b; Pennec et al., 2006; Sra and Hosseini, 2015] for details).

M dm (xa y) Expm (u) Logm (y)

S arccos(zTy) x cos(||ul|) + H%II sin(||ul|) dsa(x,y) m

S, | |log(X 2Y X 2)|lp | X2exp(X 2UX 2)X2 | X2log(X 2YX 2)X?

Parallel transport I'y_,,(v)

S? (—a:sin(HuH)uT+ucos(\|uH)uT—i— (I—uuT)>v with & = i,
S7, Ax_y VAL, with Ax_,y =Y2X 2

Therefore, the exponential map, logarithmic map and parallel transport of a product
of manifolds are obtained by combining the corresponding functions of the individual
manifolds, e.g.,

LO8(a, o) ((41,92)) = (Loga, (y1), Loga, (12)), (2.5)

with x1,y1 € Mj and x9,ys € Ms.

In this thesis, we consider problems involving two manifolds widely used in robotics,
namely the sphere (Chapters 7-8) and SPD (Chapters 3-8) manifolds. These manifolds
are described hereafter and the foregoing operations are summarized in Table 2.1.

2.2.3 The Sphere Manifold

The simplest and widely used example of a Riemannian manifold is the sphere S2
embedded in R3. This manifold can be easily represented and intuitively understood
as it constitutes an idealized model of the surface of the earth. In general, directional
data are commonly represented by unit vectors and are thus naturally analyzed as data
belonging to hyperspheres. Moreover, for various machine learning problems, the data
are normalized in a preprocessing step. For example, in image processing, shapes are
often analyzed through the Kendall shape space, which defines an equivalent class of all
translations, rotations, and scalings of the set of points defining a shape [Kendall, 1984].
After a preshape process, consisting in removing the translation and scaling from the
data, each shape is represented as a point on a hypersphere [Dryden, 2005]. As an other
example, spherical representations have been recently exploited to design variational
autoencoders with application to natural language processing [Xu and Durrett, 2018;
Davidson et al., 2018].
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Figure 2.1 — Sphere manifold 82, including e.g., (a) orientations. (b)-(¢) Points on the
surface of the sphere, such as  and y belong to the manifold. (b) The shortest path
between x and y is the geodesic represented as a red curve, which differs from the
Euclidean path depicted in blue. The vector u lies on the tangent space of & such that
u = Log,(y). (¢) I'(vy) and I'(vg) are the parallel transported vectors vy and vy from
TzM to TyM. The inner product, i.e. the angle, between vectors is conserved by this
operation.

The unit sphere S?, defined as
={zeRM .z =1}, (2.6)

is a d-dimensional manifold embedded in R4*!. The tangent space T,S% is the hyperplane
tangent to the sphere at . The unit sphere is endowed with the canonical Riemannian

metric
(U, v)p = u'v, (2.7)

with u,v € T,S% The geodesic distance is defined as
dga(x,y) = arccos(z'y), (2.8)

with «,y € S¢ and the corresponding exponential and logarithmic maps can be computed
as (see e.g., [Absil et al., 2007b])

y = Bxpg(u) = @ cos(ul) + o I = sin(w), (2.9)
u = Log, (y) = dga(@,y) % (2.10)
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2.2. Riemannian Manifolds

The parallel transport of v € T,S? to 7;8”! is given by

with Ay, = —xsin(||ul)a@’ +@cos(|jul)a’ + (I —aa'), (2.12)
where u = Log,(y) and w = II%H The different aforementioned operations are illustrated

on §? in Figure 2.1.

In this thesis, the sphere manifold S, coinciding with unit quaternions, is used as
a representation of robot orientations in the geometry-aware Bayesian optimization
framework presented in Chapter 7, see also Figure 2.1a. Bayesian optimization on high-
dimensional sphere manifolds is then studied in Chapter 8, with possible applications in
shape space representations [Dryden, 2005] or various machine learning problems where
data are normalized (e.g., in a preprocessing step).

2.2.4 The Symmetric Positive Definite Matrix Manifold

A dx d symmetric real matrix X is positive definite if " Xu > 0 for all non-zero
u € RY. Equivalently, the matrix X is positive definite if all its eigenvalues are positive
(see e.g., [Bhatia, 2007] for a thorough documentation on positive definite matrices).
Therefore, the set of dxd symmetric positive definite (SPD) matrices is denoted as Sf N
with

St ={XeR™ . X;;=X;;Vi,j=1...nand u' Xu >0Vu € RN\0O}. (2.13)

As the set Sf . is not a vector space, the use of classical Euclidean space methods for
treating and analyzing these matrices is inadequate. Similarly to spheres, a compelling
solution is to endow these matrices with a Riemannian metric so that these form a
Riemannian manifold. To do so, several Riemannian metrics have been proposed in the
literature, notably the affine-invariant [Pennec et al., 2006] and Log-Euclidean [Arsigny
et al., 2006] metrics', which both set matrices with null eigenvalues at an infinite distance
of any SPD matrix. While the former provides excellent theoretical properties, it is
computationally expensive in practice, therefore leading to a need for simpler metrics.
However, as relatively low-dimensional SPD matrices are, in general, considered in this
thesis, the computational cost of the operations derived from affine-invariant metric, i.e.,
the geodesic distance, exponential and logarithmic maps and parallel transport, remains
reasonable for our algorithms and applications.

The manifold of d xd SPD matrices Sj‘f ., can be represented as the interior of a convex
cone embedded in the space of symmetric matrices Sym?, as illustrated in Figure 2.2.

! Although they do not provide geodesic distances, several other metrics have also been proposed to
measure distances on the SPD manifold, see e.g., [Sra, 2012; Wang and Vemuri, 2004].
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TxM

Ty

v 7/
(a) (b) ()
Figure 2.2 — SPD manifold S?, including e.g., (a) stiffness ellipsoids. (b)-(c) One

++
point in the graph corresponds to a matrix (%; %g) € Sym? in which the manifold is

embedded. Points inside the cone, such as X and Y belong to the manifold. (b) The
shortest path between X and Y is the geodesic represented as a red curve, which differs
from the Euclidean path depicted in blue. U lies on the tangent space of X such that
U =Logx(Y). (¢) I'(V1) and I'(V3) are the parallel transported vectors V; and Va from
Tx M to Ty M. The inner product between vectors is conserved by this operation.

Moreover, the tangent space at any point X € Sfrl . is identified by the space of symmetric
matrices Sym? whose origin is located at X. The affine-invariant metric transforms the
original cone of SPD matrices into a regular and complete (but curved) manifold with an
infinite development in each of its d(d + 1)/2 directions [Pennec et al., 2006]. Therefore,
matrices with null or negative eigenvalues are both at an infinite distance of any SPD
matrix. The corresponding inner product between two matrices U, V' € TXSf 4 is

U, V)x = t(X 2UX"'VX2). (2.14)

Specifically, the exponential and logarithmic maps on the SPD manifold corresponding
to the affine-invariant distance

dss (X,Y) = log(X 2Y X~2)[, (2.15)
are computed as (see [Pennec et al., 2006] for details)

Y = Expx(U) = Xz exp(X 2UX 2)X32, (2.16)
U =Logx(Y)=Xzlog(X 2YX 2)X3, (2.17)

where exp(-) and log(-) denote the matrix exponential and logarithm functions. Fig-
ure 2.2b illustrates the exponential and logarithmic maps on 83 +- The parallel transport
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2.3. Tensor Operations

of Ve 7’)(81r to ’TySil+ is given by
V=Tx,y(T)=Ax.y V A% .y, (2.18)

with Ax_,y =Y2X 2 (see [Sra and Hosseini, 2015] for details). Figure 2.2c illustrates
the parallel transport operation on SE -

Note that, for a more efficient computation, the following equivalent formulations of
operations on the SPD manifold can be implemented (see Chapter 6 of [Bhatia, 2007],
and Chapter 3 of [Pennec et al., 2019] for details):

2

d
dot (X,Y) = (Z log? MX*Y)) ,
=1

Expx (U) = X exp(X~'U),
Logx (Y) = X log(X'Y),
Ax_y = (YX 1)z,

where \;(X) are the eigenvalues of the matrix X.

In this thesis, we propose a probabilistic approach to learn sequences of SPD matrices
from demonstrations in Chapter 3. As the SPD manifold coincides with the space of
manipulability ellipsoids, it is then used in the learning, tracking and transfer frameworks
for human and/or robot manipulability proposed in Chapters 4, 5 and 6. Finally, the
manifold structure is further exploited for representing robot stiffness, inertia matrices
and manipulability ellipsoids in the geometry-aware Bayesian optimization framework
presented in Chapters 7 and 8.

2.3 Tensor Operations

Tensors are generalization of matrices to arrays of higher dimensions [Kolda and Bader,
2009], where vectors and matrices correspond to 1st and 2nd-order tensors. Tensor
representation permits to represent and exploit data structure of multidimensional arrays.
In this thesis, such representation is first used in the learning process to encode a
distribution of SPD matrices (as explained in Chapter 3), which is exploited to learn
a sequence of manipulability ellipsoids (see Chapter 4). Then, tensor representation
is also exploited in the proposed manipulability tracking formulation to find the first-
order differential relationship between the robot joints and the robot manipulability
ellipsoid (1st- and 2nd-order tensors, respectively), which results in a 3rd-order tensor (see
Chapter 5). Finally, we exploit tensor representations to take into account the structure
of matrix-variate and tensor-variate data in a mixture of expert learning framework (as
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explained in Chapter 10). This section introduces the tensor operations needed for our

mathematical treatment.

2.3.1 Notations

Table 2.2 introduces the notations and dimensionality of the variables related to the
methods presented in Section 2.3. Vectors are denoted by lowercase bold letters, e.g., x,
matrices by uppercase bold letters, e.g., X, and tensors by uppercase bold calligraphic
letters, e.g., X. In particular, the matrix X,y results from the mode-m matricization of
a tensor X. The matricization operation consists in reordering the elements of a tensor
into a matrix. By defining fibers as generalization of matrix rows and columns to tensors
(rows and columns are mode-1 and mode-2 fibers), the mode-m matricization turns the
components of the mode-m fiber of X into the columns of a matrix X,,), as illustrated
in Figure 2.3.

Table 2.2 — Tensor notations

Variable / operation Description
M Number of dimensions or modes of a tensor
x € R Vector variable
X € RiixE Matrix variable
X e RIvxlu Tensor variable

X(m) € RImx (I dm—1Imi1-In)  _mode matricization or unfolding of a tensor

2.3.2 Product Operations

This section introduces the product operations defined in multilinear algebra for the
mathematical treatment of tensors. These operations and corresponding symbols are
listed in Table 2.3.

Outer product

The outer product between two vectors € € R! and y € R’ results in a I x J matrix, so
that
zoy=uwxy'. (2.19)
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X
Matricization 1) JK
operation
K ‘ I
X
I (2) IK
X 7 Ll
J X (3) 17
X c RIXJXK K i " i

Figure 2.3 — Illustration of the tensor matricization operation on a third order tensor.
The matrices X () € RIXJK X € R7XIK and X3 € REXIJ are three different

matricizations of the tensor X € RIX/xK,

Table 2.3 — Tensor-related product operations.

Product operation

Description

oxM)

W ox®o. .
P NY
X x, A
X®kY
X0oY

(X,¥)

Outer product
Tensor product
n-mode product

Kronecker product
Khatri-Rao product

Inner product

In general, the outer product between M vectors ™) m =1...M, results in a Mth-

order tensor whose elements are defined as

(m(l) ox@o. .. oar;(M))

Tensor product

11,825yt M

(2)

ia *

M)

_ (1)
=z, 'z i -

The tensor product is a multilinear generalization of the outer product of two vectors.
The tensor product of two tensors X € RIVX<-xIm 3 ¢ RN1XXIN i5 given by X @ Y €

RO x I X Jix.XJIN whose elements are

(X ® y)il,---yinjh---,jN

(2.20)

= Tiy,.ipg Yjr,edne

21



Chapter 2. Background

The tensor product is notably used to compute the covariance of tensor data, as explained
in Section 2.3.3.

n-mode product

The multiplication of a tensor X € RI1X--xInX.-XIN 1y o matrix A €R7*!» known as the
n-mode product, results in a tensor Y € R11>-xJx.XIN g4 that

V=X x, A < YF(n) = AX(n), (2.21)

where X, e RInxNil2--IN ig the n-mode matricization or unfolding of tensor X. Element-
wise, this n-mode product can be written as

(X Xn A)il---infljnin+1---7:N = : :ajninxil---inflin,in+1---iN'

in

Kronecker product
The Kronecker product of two matrices X € R”*/ and Y € RF*? is the IP x J(Q matrix

:E11Y $1]Y
XekY=| + -~ | (2.22)

{I,‘JlY .%'[JY

Khatri-Rao product

The Khatri-Rao product of two matrices X € R’*L and Y € R7* results in a matrix
X 0Y e RI”*L whose columns are equal to the Kronecker product of the columns of
X and Y, i.e.,

XOoY=[x1®y ... Tk kYLl (2.23)

Inner product

The inner product of two tensors X, Y € RI1*2>X--xIn ig defined as the sum of the

products of their entries, so that

I I Iy

<X7y> = Z Z s Z Liyia,..ing Yivsin,.ing- (2'24)

i1=lis=1  ip=1

Note that the inner product of two tensors is equivalent to the Frobenius inner product
of their m-mode matricization or unfolding Xy, ¥, € RIm* (I dm—1Imt1--Iar) and to
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the inner product of their vectorization vec(X), vec(Y) € R namely

(X, ) = (X(m), Yim)) = (vec(X), vec(Y)). (2.25)

2.3.3 Distribution of Symmetric Matrices and Related Operations

In Chapter 3, we propose to adapt the formulations of Gaussian mixture model (GMM)
and Gaussian mixture regression (GMR) to encode and retrieve sequences of SPD
matrices. To do so, we need to formulate a normal distribution of SPD matrices, for
which we first require the formulation of a normal distribution for symmetric matrices.
The corresponding distribution and related operations are defined by exploiting the
previously-introduced tensor operations, as described below.

Tensor covariance

Similarly to the covariance of vectors, the 2M th-order covariance tensor & € Rt XX In X [1X...xIn

of centered tensors X,, € R11**Ium ig given by
1 X
S=—-) X, X 2.26
N-14"" ® An, (2.26)

where N is the total number of datapoints. This definition is used in the formulation of

tensor-variate normal distributions.

Tensor contraction

As described in [Tyagi and Davis, 2008], we denote the element (i, j, k,1) of a 4th-order
tensor § by sff with two covariant indices ¢, j and two contravariant indices k, [. The
element (k,l) of a matrix X is denoted by xx; with two covariant indices k, [. A tensor
contraction between two tensors is performed when one or more contravariant and
covariant indices are identical. For example, the tensor contraction of & € R4x4xdxd g9
X € R¥™4 is written as

D D
SX = ZZstlxkl (2.27)

k=11=1

Normal distribution of symmetric matrices

The tensor-variate normal distribution of a random 2nd-order symmetric matrix X € Sym?

Rdxdxdxd

with mean = € Sym? and covariance S € is defined as [Basser and Pajevic,
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2007]
N(X[E,S) =~ ¢ 3(X-2)5 7 (X-3), (2.28)
(2r)i]S|

with d = d +d(d — 1)/2.

Mandel Notation

Mandel notation [Mandel, 1965] represents a symmetric matrix X € Sym? in the form a
d-dimensional vector mvec(X) containing the d = d + d(d — 1)/2 distinct elements of the
matrix. In Mandel notation, the off-diagonal elements of the matrix are scaled by v/2.
As an example, the expression of a 3 x 3 symmetric matrix X in Mandel notation is

r11
22
. T11 T2 X13
33 .
mvec(X) = with X = | 219 792 x93 (2.29)
V2293
r13 T23 33
V2113

V2212

The advantage of Mandel notation over other representation of symmetric matrices, such
as the Voigt notation, is that it conserves the inner product thanks to the off-diagonal
element scaling, i.e., for two matrices X,Y € Sym?

(X,Y) = (mvec(X),mvec(Y) ). (2.30)

2.3.4 Matrix Derivatives

The geometry-aware manipulability tracking formulation introduced in Chapter 5 takes
inspiration from the computation of the robot Jacobian, which is computed from the 1st-
order time derivative of the robot forward kinematics. We use the tensor representation to
similarly compute the 1st-order derivative of the function that describes the relationship
between the robot joint configuration ¢ and the manipulability ellipsoid M. The related
matrix derivatives identities are introduced in this section. In the following identities,
the matrix Y e R7”*” is a function of & € R¥X, while A€ RE*! and B €R7*L are constant

madtrices.
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Derivative of a matrix w.r.t a vector

The derivative of a matrix function Y with respect to a vector x is a 3rd-order tensor

Y cRIXIXK gych that
Y iq
(8) _ %y (2.31)

ox
Left multiplication by a constant matrix

When the matrix function Y is left-multiplied by a constant matrix, the partial derivatives

of Y are given by
0AY 0Y

or oz

x1 A. (2.32)

Proof.

0AY 0 0vij
R

ik Ok Ozy,

Right multiplication by a constant matrix

When the matrix function Y is right-multiplied by a constant matrix, the partial
derivatives of Y are given by

JYB 0Y

_ T
5 = an 2B (2.33)

Proof.

OYB . (9 o ayw
( oz )uk Oy, Zi:y”bﬂ B zj:bﬂ Oy,

Derivative of the inverse of a matrix

Finally, another useful operation for our manipulability tracking formulation is the
derivative of the inverse of the matrix Y with respect to the vector &, which results in a
3rd-order tensor, namely

oy 1 oy’

=—— Y 'x,Y T, 2.34
ox ox 1 X2 (2.34)
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Proof. We compute the derivative of the definition of the inverse Y'Y =TI as

o )
%(Y Y)= %(1)7
oYy —1 oY
8$ XQYT—i—%XlY_l:O.

Then, by isolating 8?—:, we obtain

oYy 1 oy T
a = —78 Xl I/-_1 X2 YvT_1
£Xr xXr

2.4 Learning Algorithms

This section introduces the two main learning algorithms used in this thesis. The Gaussian
mixture regression (GMR) approach, based on Gaussian mixture models (GMM), is first
described in the context of learning from demonstrations. This algorithm is extended to
encode trajectories of symmetric positive definite (SPD) matrices to learn sequences of
manipulability ellipsoids in Chapter 4. Gaussian processes (GPs), used as surrogate model
in the geometry-aware Bayesian optimization (BO) framework proposed in Chapters 7
and 8, are then reviewed. The two presented learning algorithms are also combined in a
novel model-based Gaussian process presented in Chapter 9.

2.4.1 Gaussian Mixture Model in Learning from Demonstrations

In the context of learning from demonstrations (LfD), robots are taught new skills by
providing them with (possibly physical) demonstrations of the task at hand [Ravichandar
et al., 2020]. In this context, robot motions can be generated from demonstrated trajec-
tories using various deterministic — e.g., dynamical movement primitives (DMP) [Pas-
tor et al., 2009] — or probabilistic methods, e.g., probabilistic movement primitives
(ProMP) [Paraschos et al., 2013], Gaussian mixture regression (GMR) [Calinon, 2016],
kernelized movement primitives (KMP) [Huang et al., 2019] or Gaussian process re-
gression (GPR) [Schneider and Ertel, 2010]. For the applications tackled in this thesis
(Chapters 3 and 4), we are interested in probabilistic approaches adapted for real-time
computation, that can encode the variability of the predicted trajectory. This variability,
also called aleatoric uncertainty, reflects the dispersion of the data collected during the
demonstrations, which encode different solutions or trajectories for the execution of the
task. Finally, we are interested in a method that can easily be combined with other
approaches (Chapter 9). Therefore, we choose to use GMR, which we summarize in the
following.
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Gaussian mixture regression (GMR) is a parametric approach that exploits the Gaussian
conditioning theorem to estimate the distribution of output data given input data [Ghahra-
mani and Jordan, 1994; Cohn et al., 1996]. A Gaussian mixture model (GMM) is first
estimated to encode the joint distribution of input and output datapoints, e.g., via an
Expectation-Maximization (EM) algorithm. The output conditioned on the observed
input is then predicted via a linear combination of conditional expectations. Hence,
GMR does not fit the regression function directly, but relies instead on the learned joint
distribution.

We denote & € X € RP~ and ye)ycC RDY the vectors of input and corresponding
output data, respectively, with Dy and Dy being the dimensionality of the input and
output spaces. In a GMM with C' components, the joint distribution of (x',y")T,
corresponding to a linear superposition of Gaussian, can be written as

((5)) = M {(5) 1 e30), 235

with 7y, pe and ¥, the mixing coefficient (prior), mean and covariance matrix of the ¢-th
Gaussian component. The mixing coefficients satisfy Z?:l mp =1, mp > 0, while py and
3, can be decomposed in function of input and output data as follows

py B
Wy = and Xy = .
(u? ) (2% oy

The parameters of a GMM modeling a set of N observed data {(z),y})T})_; can be
inferred by maximizing the likelihood of the model or, equivalently, the corresponding
log-likelihood

N c
Zlog{ZmN((iﬁ)!ue,Ez>}- (2.36)
n=1 /=1

To do so, the GMM parameters are first initialized, commonly with K-means, although
other initializations methods are available. For example, in the case of time-driven data,
the different components can be conveniently initialized by using several partitions of
data equally spaced in time. After initializing the parameters, the log-likelihood of the
model (2.36) can be maximized iteratively using an EM algorithm, which alternates
between the two following update steps. First, the posterior probabilities or responsibilities
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Ve of each component are computed in the expectation- or E-step with

L N((zﬁ)waze)

ven=p(€1(52)) = : (2.37)
(1)) Enn((3) m3)

Ny = ZN:WW. (2.38)
n=1

Then, the mean, covariance matrix and prior of each GMM component is updated within
the mazimization- or M-step:

P e 2.39
e N q; Yenl,, (2.39)
1 & T
Xr Xr
o= D> Ven ( n) - uz)(( n) - ,ue> , 2.40
Ny n; ( Yn Yn (2.40)
Ny
—. 2.41
Ty < N ( )

These two steps are repeated until convergence of the algorithm, i.e., until the change
of log-likelihood between two consecutive iterations falls below a given threshold. More
details on GMM and the EM algorithm can be found, e.g., in [Bishop, 2006].

GMR computes the conditional distribution of the GMM joint distribution to infer the
output vector conditioned on a given input vector. The resulting multimodal distribution
can be approximated by a single Gaussian

ylz ~ N (7, ). (2.42)

Its first and second order moments can be calculated from the conditional means and
covariances of the multivariate Gaussian distributions associated with individual compo-
nents using the laws of total mean and covariance, so that

(@) = 3 hil@)id (@), (2.43)
/=1
C

£ () = 3 h(e) (87 + i3 (@)(@F (@)7) - 2 (@)@ (@), (244)
/=1

with componentwise conditional means and covariances

A (@) = w) + S8 (@ - ), (2.45)
& -1
S I S S 20 S (2.46)
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The so-called responsability hy of component ¢ is computed in closed form as
TN (x|py, XF)

o :

Zlmf\/(«’vluf‘, =)

i=

ho(z) = (2.47)

The computational complexity of GMR mainly depends on the number of GMM com-
ponents as it governs the dimensionality of the maximum likelihood problem usually
tackled by EM. Moreover, the number of GMM components is the only parameter that
needs to be specified and can be estimated online, e.g., with a Bayesian nonparametric
approach [Tanwani and Calinon, 2019]. Therefore, GMR is well adapted for real-time
applications and its simplicity allows it to be combined easily with other complementary
approaches.

Figure 2.4 shows an example of application of GMM and GMR. The training dataset
consists of 5 demonstrations of a two-dimensional time-driven trajectory and is depicted
by gray lines. A GMM (C = 6) is first trained to encode the joint distribution of the
inputs ¢t and outputs y, as shown in Figure 2.4a. The conditional distribution of y given
t is inferred by GMR, see Figure 2.4b. The covariance Y () of the distribution encodes
the variability of the demonstrations. The output distribution is extrapolated in the
absence of training data (t > 2).

2.4.2 (Gaussian Processes

Gaussian processes (GPs) form a class of non-parametric probabilistic models that aims
at learning a deterministic input-output relationship, up to observation noise [Rasmussen
and Williams, 2006]. Gaussian processes have been widely used in many different fields
as an efficient tool to solve both regression and classification problems. In robotics, GPs
have notably been used to infer robot trajectories in LfD [Schneider and Ertel, 2010;
Silvério et al., 2018] or to estimate robot dynamics [Torres Alberto et al., 2014]. Moreover,
GP models have also been used in policy search settings, particularly in data-efficient
algorithms such as PILCO [Deisenroth and Rasmussen, 2011] and Bayesian optimization
(BO) [Shahriari et al., 2016]. In particular, GPs are considered as the common surrogate
model of BO and are used so in the Chapters 7 and 8 of this thesis. Gaussian processes
are briefly introduced below.

In the noiseless GP framework, the output y is typically seen as a function of a controlled
input £ € X C RP* with Dy being the dimensionality of the input space. Randomness
comes in an instrumental way as the function y(x) is assumed to be one realization
of a Gaussian random process or random function denoted f(x). A Gaussian Process
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(b) The mean of the GMR is represented by a continuous line and the variance by a light

tube around the estimate.

Figure 2.4 — Illustration of () GMM and (b)) GMR on a two-dimensional time-driven
trajectory. The training data are shown in light gray for all graphs. The left graphs show
the output trajectories estimated by GMR. The beginning of the trajectories is marked
by a cross. The right graphs show the estimated trajectory for each output component
as a function of the input ¢. Time and positions are given in seconds and centimeters,

respectively.
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GP(u, k) places a Gaussian prior over potential objective functions, so that
f(@) ~ N (u(@), k(z, z)), (2.48)

with mean function p : X — R and positive-definite kernel (or covariance function)
E: X xX—R

Given a set of N observed data {(x,,y,)}Y_,, predictions of the objective function
are then made by relying on the conditional distribution of f(x) knowing that f(x,,)
coincides with the observed outputs y, at their corresponding observation inputs x,,.
With & representing an arbitrary test point, the random variable f = f (Z) conditioned
on observations is also normally distributed

Fla&{@n, yntnoy ~ N (&), 6%(2)), (2.49)

with the following posterior mean and variance functions:

(@) + k(@) (K +o21) " (y — p), (2.50)

i
52 k(z, &) — k(2)" (K +o21) 'k(), (2.51)

—~
. ®
N— N~—

where y is the vector composed of the observations y,, p is the vector composed of the
means pu(x,), K is the covariance matrix with element (4, j) equal to k(x;, x;), k(&)
is a vector of covariance terms between & and the observations x,, and o. denotes the
observation noise [Rasmussen and Williams, 2006]. The posterior mean and variance
evaluated at any point & respectively represent the model prediction and uncertainty of
the function at @. This uncertainty is an epistemic uncertainty, therefore related to the
presence or absence of data in the training dataset for a given region of the input space
X.

The mean and kernel functions completely specify the GP. The most common choice
for the mean function is a constant value, while the kernel typically has the property
that close points in the input space have stronger correlation than distant points. One
popular kernel is the squared-exponential (SE) kernel

ks(@s, x;) = 0 exp (~Bd(@i, x;)?) (2.52)

where d(-, ) denotes the distance between two observations and the parameters 5 and 6
control the horizontal and vertical scale of the function. Another widely used class of
kernels is the Matérn covariance functions

21—1/

kMatém(a:i, :Bj) = m (5@ d(wi,xj))VKl, (,3\/% d(a:i, :13])) s (2.53)

where T'(-) and K, denotes the gamma distribution and the modified Bessel function,
respectively. The Matérn covariance functions can be expressed in simple form when the
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Figure 2.5 — Ilustration of GPR on a two-dimensional time-driven trajectory. The
training data are shown in light gray for all graphs. The mean is represented by a
continuous line and the variance by a light tube around the estimate. The left graphs
show the output trajectories estimated by GPR, respectively. The beginning of the
trajectories is marked by a cross. The right graphs show the estimated trajectory for
each output component as a function of the input ¢. Time and positions are given in
seconds and centimeters, respectively.

parameter v is half-integer. In particular, the Matérn kernels with parameter v = 1/2,
v =3/2 and v = 5/2 can be expressed as

Knatérm,1/2(i, ;) = 0 exp (—Bd(z;, x5)) (2.54)

FMatern,3/2(Ti, T5) = 0 (1 + V/3Bd(x;, m])) exp (—\/gﬂd(a:i, :cj)) , (2.55)

kMatérn,s/2(Ti, ;) = 0 (1 + V5d(xs, ;) + 252(1(%7%)2) exp (—ﬁﬁd(muwg‘)) :
(2.56)

The Matérn kernel with v = 1/2 is also known as the exponential kernel, while the case
v — oo corresponds to the SE kernel (2.52). In general, low v-values correspond to
rough GPs, while high v-values generate smoother functions. The kernel parameters and
the observation noise are usually inferred via maximum likelihood estimation (MLE),
i.e., by setting the set of parameters © as those maximizing the log of the marginal
likelihood [Rasmussen and Williams, 2006]

1 1
log p(ylz, ©) = —Sy" (K +020) "'y — T log(K +021) — S log(2m). (257

Figure 2.5 shows an example of application of Gaussian process regression (GPR) with
a zero-valued mean function and a Matérn kernel (v = 5/2). The training data set
consists of 5 demonstrations of a two-dimensional time-driven trajectory. The conditional
distribution of y given ¢ corresponds to the posterior distribution of the GP. We observe
that, in the absence of training data (¢t > 2), the prediction tends to follow the prior
mean value and shows a high uncertainty.
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2.5 Conclusion

The mathematical tools, methods and algorithms introduced in this chapter are the
backbone of this thesis. Several of the proposed models and solutions for different robot
learning problems described in this thesis exploit one or several of the tools presented
here. The following chapters constitute the core of this thesis and describe in details how
robots can learn and refine skills while exploiting domain knowledge through geometry-
and structure-awareness. Specific background will be further presented at the beginning
of certain chapters.
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8] Gaussian Mixture Model
on the SPD Manifold

One of the main contributions of this thesis is built on the problem
of transferring skills to a robot. Specifially, the Part I of this thesis
proposes a geometry-aware probabilistic framework to learn symmetric
positive definite (SPD) matrices from demonstrations.

The proposed approach, which exploits Riemannian manifold theory and tensor approaches,
is introduced in the following chapter. Moreover, a detailed analysis of the importance of
geometry-awareness in the proposed learning formulation is proposed at the end of this
chapter.

/Publication note \

The material presented in this chapter is adapted from the following publications:

e Jaquier, N. and Calinon, S. (2017). Gaussian mixture regression on symmetric
positive definite matrices manifolds: Application to wrist motion estimation with
sEMG. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
59-64;

e Rozo, L., Jaquier, N., Calinon, S., and Caldwell, D. G. (2017). Learning manipu-
lability ellipsoids for task compatibility in robot manipulation. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), pages 3183-3189;

e Jaquier, N., Rozo, L., Caldwell, D. G., and Calinon, S. (2020b). Geometry-aware
manipulability learning, tracking and transfer. Intl. Journal of Robotics Research.

Source code
Source codes related to this chapter are available at:

k https://github.com/NoemieJaquier/Manipulability. /
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Chapter 3. Gaussian Mixture Model on the SPD Manifold

3.1 Introduction

As data lying on Riemannian manifolds arise naturally in many domains and are shown
to be well-adapted descriptors for various applications, there is an obvious necessity of
being able to learn (from) these particular data. To do so, a naive approach considers
these data as if they belonged to the Fuclidean space and applies classical learning
methods. Beyond the mathematical inconsistency and the inexactitude of this approach,
the performance of the learning algorithm may be seriously compromised by ignoring the
intrinsic geometry of the data. Moreover, a post-processing phase may be required if
the output of the learning algorithm must lie on a specific manifold, which may bias the
learning outcome. As an example, consider a learning problem where the output must lie
on the SPD manifold. To guarantee the positive-definiteness of the outputs, an obvious
naive solution adds a post-processing phase that increases the negative eigenvalues of
the matrix until they become positive. However, this may generate a bunch of data with
close-to-zero eigenvalues, which may be problematic for the task at hand and may not
reflect the real distribution of the outputs on the SPD manifold.

Therefore, a smarter way to learn quantities belonging to Riemannian manifolds involves
adapting the classical algorithms towards geometry-aware learning approaches. The
resulting methods (see, e.g., [Fletcher, 2013; Mallasto and Feragen, 2018; Barachant et al.,
2012]) allow an efficient exploitation of the available knowledge on the intrinsic geometry
of the data and lead to better performance compared to the corresponding geometry-
oblivious approaches. In this chapter, we are interested in learning SPD matrices by
demonstrations. We focus here on a parametric method widely used in LfD, namely
Gaussian mixture regression (see Section 2.4 for a short background), and propose a
tensor-based formulation of Gaussian mixture model (GMM) and Gaussian mixture
regression (GMR) that takes into account the geometry of the SPD manifold (introduced
in Section 2.2.4). The proposed approach allows the encoding and retrieval of trajectories
formed by SPD matrices.

Several works presented extensions of the GMM/GMR framework to Riemannian mani-
folds, notably to the sphere manifold. Simo-Serra et al. [2017] proposed an extension
of EM algorithm to Riemannian manifold for data in vector form. Their approach
allows each distribution to be located on its own tangent space. Kim et al. [2017] also
reformulated GMM to handle the space of rotation in R3. Therefore, both Simo-Serra
et al. [2017] and Kim et al. [2017] presented methods for regression from a mixture of
Gaussians on Riemannian manifolds, although they only partially exploited the manifold
structure in Gaussian conditioning. Zeestraten [2018] extended probabilistic encoding
using Gaussians to Riemannian manifolds with data represented in vector form. The
author demonstrated that the parallel transport of covariance matrices is essential for
Gaussian conditioning — i.e., for GMR — on Riemannian manifolds. Other works focused
on extending GMM to SPD matrices. Said et al. [2017] proposed an implementation of
EM for Gaussian mixture on SPD manifolds. However, their formulation only mildly
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3.2. Background: Statistics on SPD Manifolds

characterizes the (co)variability of SPD matrices as it is represented by a scalar. Moreover,
Zhan and Ma [2012] proposed a modified EM algorithm for GMM on SPD manifolds,
where SPD matrices are converted to vectors using Voigt notation. However, to the best
of our knowledge, no extension of GMR to the SPD manifold has been presented in the
literature.

In this chapter, we present the mathematical formulation of a geometry-aware Gaussian
mixture model that encodes a set of demonstrations either lying on the SPD manifold
or lying on a product space, where one space is a SPD manifold. This probabilistic
formulation models the trend of the demonstrated sequences along with their variability,
reflecting their dispersion through the different demonstrations (see Section 3.3). To do so,
we exploit a normal distribution on the SPD manifold, where the covariability of matrices
has the form of a 4th-order tensor (see Section 3.2 for a short background). As presented
in Section 3.4, a distribution of trajectories can then be retrieved via a geometry-aware
GMR on the SPD manifold. Finally, we show the importance of geometry-awareness in
our learning framework in Section 3.5.

3.2 Background: Statistics on SPD Manifolds

Statistical tools adapted to Riemannian manifolds are required to analyze, compare
and learn manifold-valued observations. We summarize here the main tools used in
this chapter, namely the computation of mean and covariance values and the notion
of normal distribution on Riemannian manifolds. For our formulation of GMM and
GMR, we particularly focus on statistics over a set of SPD observations. For a thorough
introduction to intrinsic statistics on Riemannian manifolds, we refer the interested
reader to [Pennec et al., 2006].

3.2.1 Mean and Covariance of SPD Matrices

In this thesis, we use the Riemannian manifold framework to compute the mean and
covariance of SPD matrix profiles. These notions are exploited in the definition of the
normal distribution on Riemannian manifold, as well as in the analysis of manipulability
ellipsoids profiles in Chapter 4.

A Riemannian treatment is necessary to ensure that the mean of a set of SPD matrices
is unique and valid, meaning that it belongs to the space of SPD matrices. Similarly to
the notion of mean value in the Euclidean space, the Fréchet mean [Fréchet, 1948] of a
set of N datapoints X, € Sff . corresponds to the matrix E € Sf , that minimizes the
variance of the observations w.r.t E, or equivalently the sum of the squared manifold
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Chapter 3. Gaussian Mixture Model on the SPD Manifold

distances SN, d(E, X,,), so that

|
== in|— dZ, X,) | . 1
argmin (N Z (2, )) (3.1)

As detailed in [Pennec et al., 2006], this optimization problem can be solved iteratively
with a Gauss-Newton algorithm. At each iteration, the datapoints are first projected
into the tangent space of the current estimate of the mean E using the logarithmic map.
Then, the Euclidean mean of these points is computed and projected to the manifold
using the exponential map, which corresponds to the updated estimate of the mean, i.e.,

[

N
« Exps (;f 3 LogE(Xn)> | (3.2)
n=1

The initial estimate of Z can for example be set as one of the points X,,. This optimization
problem tends to converge rapidly, typically in less than 10 iterations. Note that the
Fréchet mean is defined not only for Riemannian manifolds, but in general for all the
metric spaces'. We presented its definition on the SPD manifold for convenience.

Generally speaking, the covariance X of observations x, € M belongs to the tangent
space 7, M of their mean p € M and is obtained by computing the covariance of the
points projected to the tangent space of the mean with Log”(mn), ie.,

1 N

Y= N_1 Z Log“(:cn)LogM(wn)T. (3.3)

n=1

As SPD matrices can be seen as 2nd-order tensors, their covariance can be computed as
a 4th-order tensor, see (2.26). Therefore, the covariance tensor S € R4X4xdxd of 3 set of
observations X, € Sff . is computed in the tangent space TESf . of the mean E as

1 N
S=—— Z Log=(X,,) ® Log(X,), (3.4)

where ® represents the tensor product (2.20). The concepts of mean and covariance on
the SPD manifold §2, are illustrated in Figure 3.1.

3.2.2 The Normal Distribution for SPD Matrices

In order to define a normal distribution for SPD matrices, we first introduce the concept
of normal distribution on Riemannian manifolds and of normal distribution of symmetric

'In some cases, Fréchet mean is equivalent to the Karcher mean, which designates local means of
probabilitity measures on Riemannian manifold (see [Arnaudon et al., 2011; Pennec et al., 2006] for
details).
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3.2. Background: Statistics on SPD Manifolds

Tis Figure 3.1 — Illustration of the concepts of mean and

covariance on the SPD manifold SE +- One point rep-
resents a matrix (%; %;) € Sym?. Points inside the

cone, such as the 4 dark gray dots, belong to SL. The
Fréchet mean 2 and covariance tensor S for the 4 points
on the manifold are displayed as red point and ellipsoid,

—

respectively. The mean E differs from the Euclidean
mean Ep depicted in blue.

matrices. These two concepts can then be combined to form a normal distribution on
the SPD manifold.

The Normal Distribution on Riemannian Manifolds

Pennec et al. [2006] proposed to generalize the multivariate normal or Gaussian distribu-
tion to Riemannian manifolds by maximizing the entropy in the tangent space knowing
the mean p and covariance 3 of the observations. As shown in [Pennec et al., 2006], the
multivariate Gaussian distribution on Riemannian manifold can be locally formulated as

Nu(z|p, X) = 1 iLog,@)® ' Log,a) (3.5)
(2m)¢|x|

This formulation has the advantage of being simple to use and has been successfully
exploited in [Simo-Serra et al., 2017; Dubbelman, 2011; Zeestraten, 2018|.

The Normal Distribution of Symmetric Matrices

Random vectors and covariance matrices of a multivariate normal distribution can be
interpreted as 1st and 2nd-order tensors. Following this interpretation, Basser and Pajevic
[2007] proposed to generalize this statement to a tensor-variate normal distribution of a
2nd-order random symmetric tensor X € Sym? with a mean Z € Sym? and 4th-order
covariance tensor 8 € R¥*4Xdxd (2 96) 5o that
N(X|E,S) = ——1 o~ bX-2)s7(x-5), (3.6)
(2m)7|S|

where we used the tensor contraction (2.27) to compute the argument in the exponential
and d = d + d(d — 1)/2 is the number of distinct elements of the symmetric matrix
belonging to the space Sym?. Note that this distribution requires the computation of the
inverse and the determinant of 4th-order tensors. This can be resolved by exploiting the
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symmetries of the matrices X, E and of the covariance tensor &, as shown by Basser
and Pajevic [2007] and summarized below.

We denote here the element (i, j, m,n) of a 4th-order tensor S by si;" with two covariant
indices ¢, 7 and two contravariant indices m, n. The element (7,5) of a matrix X is
denoted by x;; with two covariant indices 4, j. As stated previously, X ¢ Sym? is a
symmetric matrix of dimension d, such that x;; =x;;. In this case, the covariance tensor
S c RIxdxdxd jpherits symmetries such that spt=sT=si" and sg?”:sf%n. Therefore,
by using Mandel notation (see Section 2.3.3 and (2.29)), the symmetric matrix X can
be written as a d-dimensional vector . Similarly, any 4th-order tensor 8 satisfying the
aforementioned symmetry properties can be mapped into a symmetric positive definite
2nd-order tensor ¥ € R¥*d. For simplicity, we take the example of d = 3, which can
be generalized to higher dimensions. X is in this case written as a d = 6-dimensional

column vector x with
T11

Z22

x = mvec(X) \/%?512 . (3.7)

V2213
V2123

Similarly, a 3 x 3 x 3 x 3 tensor S is converted to a 6 x 6 symmetric matrix 3 as

11 22 33 12 13 23
511 511 sit V2siT V2si V/2sT
22 22 33 12 13 23
S11 53 sy V2833 V2shy  V/2s33
33 33 33 12 13 23
¥ = mmat(8S) = 511 b2z V2 V2 Vs (3.8)
N V2812 V2sd2 (2512 2512 9613 9623 | ’

11 22 33 12 12 12
VRl VA VadE adi odi 2]

23 23 23 23 23 23
\/5511 \@322 \@333 2s75 2s13 2553

Therefore, due to the properties of Mandel notation, the tensor contraction XS 1 X
is equal to "X "'z and the normal probability density function N'(X|M,S) (3.6) is

equivalent to

N@lp,S) = ——1 ~be-wTS @n) (3.9)

(2m)d|Z|
with & = mvec(X), p = mvec(E2) and ¥ = mmat(S). This equivalence allows a simple
computation of the symmetric-matrix-variate normal distribution (3.6).

Another advantage of the transformation (3.8) is that it allows us to compute easily
the eigenvalues and eigentensor of the 4th-order tensor §. These can notably be used
to directly compute the inverse ™! and determinant |S| and will also be crucial
for the parallel transport operation of 4th-order tensors between tangent spaces of
the SPD manifold in the GMR presented in Section 3.4. Similarly to the eigenvalue
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3.3. Gaussian Mixture Model on SPD Manifolds

decomposition of matrices, the eigenvalues A and eigentensors V' € R%*¢ of a 4th-order
tensor 8 € R¥*dxdxd gatisfy the fundamental equation SV = AV. They may also
be found using the correspondence between the 4th-order covariance & and the 2nd-
order covariance 3. First, the eigenvalues A of 3 and 8§ are equal. Then, similarly to
transformations (3.7) and (3.8), there is a one-to-one relationship between the elements
of a given eigenvector v € R? of 3 and the corresponding eigentensor V' € Sym? of S. In
the example d = 3, given an eigenvector of X, such that v = (v11, ve2, V33, V12, V13, vgg)T,
the corresponding eigentensor of S is

11 %Um %Ul?)
V = %012 V22 %023 ) (3.10)
%013 %Uzs U33
which can be easily generalized to higher dimensions.

Similarly to the matrix case, the inverse and determinant of the covariance & can be
computed using the eigenvalues \; and eigentensors Vj as

ST=Y"N'"Vio Vi, (3.11)
k

and the determinant is given by

1S1=) A (3.12)
k

The Normal Distribution on the SPD Manifold

By combining the notions of normal distribution on Riemannian manifolds (3.5) and
normal distribution for symmetric matrices (3.6), we can define the normal distribution
on the SPD manifold as

Nu(X|E,8) = B ¢~ 3Log=(X) 87! Log=(X) (3.13)

(2m)?|S|

where X € Sf o EE Sf . is the mean of the distribution and origin in the tangent space
’7'58j‘f+ and S € ESﬁ+ is the covariance tensor.

3.3 Gaussian Mixture Model on SPD Manifolds

The extension of GMM to SPD manifolds is now introduced by exploiting the normal
distribution on SPD manifolds (3.13). Similarly to the Euclidean case, a GMM on the
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SPD manifold is defined by

c
p(X) = mNu(X|Be, So), (3.14)
=1

with C being the number of components of the model, and 7y representing the priors
such that >, m = 1.

The parameters of a GMM on the manifold of SPD matrices are estimated by an
Expectation-Maximization (EM) algorithm. Specifically, the responsibility of each
component £ is computed in the E-step as:
s ZN X, B, Sy
Pl Xy) = & e ) ; (3.15)
i Nm(Xi|Ei, Si)

)

N
Ny =3 p(l]X,). (3.16)
n=1

During the M-step, the mean E, is first updated iteratively until convergence for each
component. The covariance tensor Sy and prior 7y are then updated using the new mean:

1 N
B+ EEXPEZ <Z p(4| Xy) LogEZ(Xn)> , (3.17)
n=1
1 N
Sp N, ;p(ﬁxn) Logg,(Xn) ® Logg,(Xy), (3.18)
Ny
Ne. 1
Ty < N (3 9)

Note that the update step for the mean is equivalent to computing a weighted Fréchet
mean. Figure 3.2 illustrates the M-step of one iteration of the EM algorithm to fit a
GMM on the SPD manifold Sz +- The data are depicted by gray dots inside the SPD
cone and the number of components of the GMM is C' = 2.

3.4 Gaussian Mixture Regression on SPD Manifolds

GMR computes the conditional distribution p(Y | X) of the joint distribution p(Z), where
the sub-indices x and y denote the sets of dimensions that span the input and output
variables X,Y € Sff .- We use the following block decomposition of the datapoints,
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(a) Initial GMM means =, (b) Data in Tz,S? (c) Weighted means in T=,S?

St et

(d) Updated means =, € 82, (e) Data in 7,82,

(f) Updated GMM components

Figure 3.2 — Illustration of the M-step of one iteration of the EM algorithm to fit a GMM
model (C' = 2) on the SPD manifold §2,. (a) Initial state. The data X, € S2, are
represented as gray dots. The initial component means Z, with £ = 1,2 are depicted as a
blue and purple dot, respectively. (b)-(d) Update of the component means. (b) The data
are projected into the tangent spaces Tg,S2, using the logarithmic map Logg ,(Xn). (c)
The weighted Euclidean mean of the points (3.15), represented in dark colors, is computed
in each tangent space and projected back to the manifold using the exponential map.
The steps (b) and (c) are repeated until convergence (3.17). (d) Updated components
means =y. (e) Computation of the components covariance tensors Sy in the tangent
space of the means Z/ (3.18). (f) Updated means and covariances.
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means and covariances:

X o0
Z— 3.20
(3 ) (3:20)
== (‘” 0 ) (3.21)
0 Zyy
s o] o o
0o S| o0 o
S = X , (3.22)
0 o0 |S% o
o o | o0 s¥

where we represent the 4th-order tensor by separating the components of the 3rd- and
4th-modes with horizontal and vertical bars, respectively. With this decomposition,
manifold functions can be applied individually on input and output parts, for example
the exponential map would be

Exp:XX(X) 0
Expg(Z) = ( o Engyy(Y)> . (3.23)

Similarly to GMR in Euclidean space [Rozo et al., 2016] and in manifolds where data
are represented by vectors [Zeestraten, 2018], GMR on SPD manifold approximates the
conditional distribution by a single Gaussian

Y|X ~ N(&,y,80)), (3.24)

A
p—
=)

where the mean =, is computed iteratively until convergence in its tangent space using

—_ 1 —_
Ay =Logg (Eyye) — Syyz Siie Logx(Exx.r), (3.25)
R C
Hyy EXpéyy<£Zlthg), (3.26)

with hy describing the responsibilities of the GMM components in the regression, namely

7T€ N(X|'—'XX 45 8;«; e)

hy = . (3.27)
21 i N(X[Exxi Siiz)
i=
The covariance S’g is then computed in the tangent space of the mean (3.26)
< xx—1 A A
Z ( AN yyZSXXZ SXX£+A€®A€) —-B y®5yy7 (3'28)
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where 8 is the parallel transported covariance tensor

S=T_,(S) with Z= (J(f &0 ) . (3.29)
—00

This covariance can typically be used to define the controller gains of robotic systems for
trajectory tracking problems, as we will see in Chapter 5. Note that the definition of the
tangent space Tz M (which has the structure of a Euclidean vector space) is what allows
us to compute the conditional distribution above. Also in order to parallel transport
a 4th-order covariance tensor 8 € R4*@xdxd e exploit the eigentensor decomposition
described in Section 3.2. The approach is similar to the one presented in [Freifeld
et al., 2014], where the authors showed that covariance matrices of vector elements
belonging to a Riemannian manifold can be parallel transported between tangent spaces
by transporting their eigenvectors. Therefore, the covariance & is first converted to a
2nd-order tensor ¥ € R4 with d = d + d(d — 1)/2 using Mandel notation with (3.8).
We can then compute its eigentensors Vi, with (3.10), which are used to parallel transport
the covariance matrix between tangent spaces. Let Vj, = Iz, (Vi) be the k-th parallel
transported eigentensor with (2.18) and A\ the k-th eigenvalue. The parallel transported
4th-order covariance tensor is then obtained with

r

m

Lx(8)= Z e Vi ® V. (3.30)
k

Notice that the geometry-aware Gaussian mixture regression presented above can also
be used in the case where only the input or the output belongs to the SPD manifold (see
also the applications presented in Chapters 4). The input or output data encoded in the
form of scalars or vectors are handled by defining the corresponding element either as a
scalar or as a diagonal matrix, by placing the elements of the vector in the main diagonal,
e.g., X =diag(x). Data on several manifolds can also be combined: One example is to
build a GMM that encodes the position, orientation and manipulability ellipsoid of the
end-effector of a robot, which belong to the Euclidean space R?, the sphere manifold
S? and the SPD manifold S%

+4
transport used in the GMR computation must therefore be adapted consequently.

respectively. The mapping functions and the parallel

Figure 3.3 shows an example of GMR where the input z is a scalar and the output
belongs to the SPD manifold 53 .- The distribution is encoded with a 2-component GMM.
Figure 3.3a displays the demonstrated data as gray dots. Each point on the output
space 82, (right) corresponds to one point in the input space R (left). The mean and
covariance of the two GMM components are depicted in blue and purple, i.e., Ex» and
8774 in the input space and Ey,, and 833 in the output space. Note that the covariability
of the inputs and outputs 8% is not displayed. Then, given a new input z (depicted

by a green dot), we compute the conditional distribution p(Y|z) ~ N(Eyy, Szi) The
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Output space S_%+
Input space R

Y

A
—
=

) GMM model, new input x in green (left) and initial mean estimate =, in green (right)

O

b) Transported covariances ¢) Updated mean

NG

(d) Transported covariances  (e) Retrieved output distribution

Figure 3.3 - Illustration of GMR on the SPD manifold 82, . (a) GMM model (C' = 2) of
the joint distribution of the inputs z,, € R and the outputs Y;, € S2 +,. The demonstrated
data are depicted in gray. The new input x and the initial estimate of .'é.yy are depicted
by green dots. éw is initialized as equal to the mean of the closest GMM component to
x in the input space. (b) Parallel transport of the covariance tensors into the tangent
space of 2, to update the mean value (3.26). (¢) Mean £y, after convergence. (d)
Parallel transport of the covariance tensors into the tangent space of &, to compute
the covariance S (e) Mean and covariance of the conditional distribution p(Y|z)
retrieved by the GMR.
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computation of the mean éw is illustrated in Figures 3.3b and 3.3c and the computation
of the covariance S;z in Figure 3.3d. The resulting Gaussian is depicted in Figure 3.3e.

Finally, note that Mandel notation can also be used for the GMM/GMR operations,
notably to avoid adding extra zeros in the implementation when data belonging to
different manifolds are treated jointly. We can write (3.20), (3.21) and (3.22) as

The manifold operations are similarly adapted, e.g., the exponential map (3.23) and the
logarithmic map become

[ mvec (EXpE ol X )) [ mvec (LOgE NG ¢ ))
Expy(2) = (mvec <EXpEyy(Y)) + Logu(z) = mvec (Logayy(Y)) ’

and the following Gaussian distribution can then be used for the GMM and GMR

implementations,

Nzl B) = ——1 o 3log, (=)= Lo, (2)
(2m)|z]

3.5 Importance of Geometry-awareness for Learning SPD
Matrices

In the previous sections, we introduced geometry-aware GMM and GMR formulations for
SPD matrices. In this section, we show that the geometry-awareness of our formulations
is crucial for successfully learning SPD matrices in addition to providing an appropriate
mathematical treatment of the problem. To do so, we evaluate the proposed learning
formulation compared to two Euclidean frameworks that ignores the geometry of the
SPD manifold.

3.5.1 Importance of Geometry-awareness for Encoding SPD Matrices

We start our analysis by considering the computation of GMM on the SPD manifold. To
do so, we consider an example where a 1-state GMM (i.e. a Gaussian) is trained from a
dataset composed of points equally spaced along a geodesic on the SPD manifold Sf -
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Note that, such a dataset on the manifold is equivalent to a dataset of points equally
spaced along a segment of line in a Euclidean space. We first compare the proposed
geometry-aware GMM formulation with a GMM acting in the Euclidean space, i.e.,
ignoring that the data belong to the set of SPD matrices. Secondly, we compare the
proposed approach with a Cholesky-based Euclidean GMM, where a Euclidean GMM
is fitted to the lower-triangular matrices L obtained from the Cholesky decomposition
X =LL", where X € Si_.

Figure 3.4 displays the mean and covariance of the geometry-aware and Euclidean GMM,
as well as the mean of the Cholesky-based Euclidean GMM. Equivalently to the mean of
points equally spaced along a segment of line in a Euclidean space, the mean Z 4 of the
geometry-aware GMM component lies in the middle of the geodesic. Moreover, similarly
to the covariance of points along a line in the Euclidean space, the geometry-aware
covariance of the GMM component, lying in the tangent space of the mean, is elongated
along the geodesic direction and close-to-zero along the other dimensions. As previously
observed in Figure 3.1, the Euclidean mean Eg differs from the geometry-aware mean
Eam. Moreover, the covariance of the GMM component of the geometry-aware and
Fuclidean approaches are not equivalent. The Euclidean covariance is computed by
considering the Euclidean deviations of the data compared to their mean in the ambient
space, while our geometry-aware approach computes the covariance from the deviation
of the SPD data projected in the tangent space of their mean. Overall, the Euclidean
formulation ignores the geometry of the SPD manifold and considers it as a flat space.
Therefore, it misinterprets the configuration of the dataset, ignoring that the data are
following a geodesic on the manifold, which would be equivalent to following a straight

line in the Euclidean space.

Both geometry-aware and Cholesky-based Euclidean approaches obtain similar means
of the GMM component. This is due to the fact that the Euclidean mean computed
using the Cholesky decomposition is a good approximation of the mean computed on
Sf . if the SPD data are close enough to each other. However, the covariances of the
GMM components of both approaches are not equivalent. Indeed, the covariance of
our geometry-aware approach is computed using the SPD data projected in the tangent
space of the mean, while that of the Cholesky-based Euclidean GMM corresponds to the
covariance of the elements of the vectorized Cholesky decomposition, which ignores the
geometry of the SPD manifold.

An other important aspect in GMM and GMR is the computation of the responsibilities
of each components. In GMM, those are computed during the E-step and drive the
computation of the weighted mean and covariances in the M-step (see (3.15)). Moreover,
for GMR, they determine the influence of each GMM component during the regression
process (see (3.27)). In the following example, we consider a 2-component GMM with
isotropic covariances, as displayed in Figure 3.5a. We compare the influence of each
GMM component in the SPD space based on the proposed geometry-aware framework
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Ti Figure 3.4 — Importance of geometry in GMM formu-
lation. The demonstrated data, equally spaced along
a geodesic, are depicted by gray dots. The geometry-
aware and Euclidean GMM components are depicted in
red and blue, respectively. The center of the Cholesky-
based GMM component is depicted by a yellow dot.
Note that its covariance is not depicted, as it corre-
sponds to the covariance of the elements of the vector-
ized Cholesky decomposition.

against the responsibilities computed from the Euclidean and Cholesky-based Euclidean
formulations. In order to compare equivalent distributions in the SPD and Cholesky
spaces, the covariances of the Cholesky-based GMM components were computed by
sampling from the geometry-aware Gaussian distributions.

Figures 3.5b, 3.5¢ and 3.5d show the responsibility of each GMM component over the
SPD cone for the geometry-aware, Euclidean and Cholesky-based Euclidean formulations,
respectively. The points are colored with proportion of blue and magenta corresponding
to their posterior probabilities of having been generated by the corresponding GMM
components of Figure 3.5a. Therefore, points that could have been generated by either
component appear in purple. For each formulation, four SPD matrices are depicted in
the form of ellipsoids whose color also corresponds to their probability of belonging to
each GMM component. As expected, the Euclidean formulation separates the SPD cone
in two parts along a soft plane-shaped border located at equal Euclidean distance from
the two components means. However, this separation does not consider the geometry of
the space. For example, SPD matrices whose main axis is elongated in the same direction
of that of one GMM component mean may have high probability of belonging to the
other component. As an example, the third ellipsoid is oriented in the same direction as
=y but has a very high probability of belonging to E; according to the Euclidean GMM.
Unlike the Euclidean approach, both geometry-aware and Cholesky-based formulation
draw a curved soft border between the SPD matrices with high probability to have been
generated by one or the other Gaussian. However, solely the geometry-aware formulation
fully considers the orientation of the ellipsoids to determine the component from which
they were likely generated (observe also that the purple zone reaches the tip of the cone
in the geometry-aware case).

3.5.2 Importance of Geometry-awareness for Retrieving SPD Matrices

In the previous section, we showed the importance of geometry-awareness to learn a GMM
on the SPD manifold and to perform GMR when the inputs of the model lie on the SPD
manifold. In this section, we evaluate the proposed learning formulation to retrieve SPD
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(d) Cholesky-based Euclidean responsibilities

Figure 3.5 — Importance of geometry in the computation of the responsabilities of
GMM components. (a) 2-states GMM with isotropic covariance matrices. (b)-(d)
Responsibilities of each GMM component over the SPD cone. The points on the cones are
colored with proportion of blue and magenta corresponding to the posterior probabilities
of having been generated by each GMM component. Note that the responsibility of the
two components for some of these points differ in function of the approach.

92



3.5. Importance of Geometry-awareness for Learning SPD Matrices

matrices, i.e., when the outputs of the model belong to the SPD manifold. Specifically,
we consider an example where a time-varying sequence of 2-dimensional manipulability
ellipsoids M € Sf . is learned from demonstrations. In robotics, manipulability ellipsoids
are kinetostatic performance measures that indicate the preferred directions in which
force or velocity control commands may be performed at a given joint configuration of
the robot. Manipulability ellipsoids and related applications are covered in details in the
Chapters 4, 5 and 6 of this thesis.

In this example, we encode a distribution of manipulability ellipsoids with a GMM
acting in the Euclidean space and we then retrieve desired manipulability ellipsoids via
the corresponding GMR. To ensure the validity of the desired manipulability ellipsoids,
GMM and GMR are performed on lower triangular matrices L obtained via Cholesky
decomposition. Thus, the positive-definiteness of the desired manipulability ellipsoids
computed as M =LLT is guaranteed, where L is the estimated GMR output. Note
that this property is not guaranteed in the case where GMM and GMR acting in the
Fuclidean space is applied directly to the manipulability ellipsoids M. Therefore, we
do not consider this approach in the comparison as the desired matrices N may not be
manipulability ellipsoids, i.e., not be SPD, in some cases.

Figure 3.6 compares the proposed approach (Sections 3.3, 3.4) and the manipulability
learning using GMM/GMR acting in Euclidean space through Cholesky decomposition.
The demonstration consists of a time series of changing manipulability ellipsoids. For
each approach, a 1-state GMM is trained and a reproduction is carried out for a longer
time period than the demonstration using GMR. As observed in Section 3.5.1, both
geometry-aware and Cholesky-based Euclidean approaches obtain similar means of the
GMM component (see Figures 3.6a, 3.6b). This is due to the fact that the Euclidean
mean computed using the Cholesky decomposition is a good approximation of the mean
computed on Sf . if the SPD data are close enough to each other. However, as discussed
in the Section 3.5.1, the covariances of the GMM components of both approaches are not
equivalent.

The manipulability ellipsoids profiles retrieved by the geometry-aware and Cholesky-
based Euclidean GMR are similar around the mean of the GMM component, but diverge
when moving away from it (see Figure 3.6¢). This is because the estimated output in
Euclidean space is only a valid approximation for input data lying close to the mean. In
contrast, our approach is able to extrapolate the rotating behavior of the demonstrated
manipulability ellipsoids as the recovered trajectory follows a geodesic on the SPD
manifold (see Figure 3.6b). Note that this is the equivalent to following a straight line
in Euclidean space, which is the expected result of a trajectory computed via Gaussian
conditioning. This behavior is obtained by parallel transporting the GMM covariances
to the tangent space of the mean of the estimated conditional distribution of GMR
(3.29). Therefore, the Cholesky-based Euclidean GMR does not recover a trajectory
following a geodesic on the manifold, leading to inconsistent extrapolated manipulability
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(d) Determinant of retrieved manipulability profiles over time

Figure 3.6 — Importance of geometry to retrieve SPD matrices via GMR. (a) Demonstrated
data (depicted in light gray), and mean of the GMM component for the geometry-
aware and Cholesky-based Euclidean approaches (overlapping blue and red ellipsoids,
respectively). (¢) Manipulability profiles retrieved by the geometry-aware and Cholesky-
based Euclidean GMR, shown as green and orange ellipses, respectively. (d) Determinant
of the retrieved manipulability profiles over time. (b) Mean of the GMM component and
estimated profiles in the cone of SPD matrices. The manipulability profile obtained by our
approach, shown in green, follows a geodesic. The profile obtained by the Cholesky-based
Euclidean framework is depicted by the orange curve and does not follow a geodesic
on the manifold. The geodesic containing the mean of the Cholesky-based Euclidean
GMM, being a geometrically valid trajectory (depicted in purple), does not correspond
to the trajectory obtained with the Cholesky-based Euclidean framework. Thus, the
Cholesky-based Euclidean approach is geometrically flawed.
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ellipsoids. This can also be observed in the evolution of the determinant of the retrieved
manipulability profile (see Figure 3.6d). The determinant of the manipulability ellipsoids
recovered by the Cholesky-based Euclidean GMR, decreases linearly in a slower pace than
the geometry-aware profile. This is due to the fact that the ellipsoids of the Euclidean
approach grow along the vertical axis over time.

The reported results show that our geometry-aware approach accurately reproduces
the behavior of the demonstrated data, and therefore provides a mathematically sound
method for learning and retrieving SPD matrices. Note that similar behaviors are
observed for GMM with any number of states, the number C' = 1 was chosen here to
facilitate the visualization of the results.

3.6 Conclusion

This chapter presented a novel LfD framework for encoding and retrieving SPD matrices.
We exploited tensor representation and Riemannian manifolds to build a geometry-
aware probabilistic learning model and showed the importance of geometry-awareness
for learning on the SPD manifold. The presented approach is flexible as it allows us
to easily learn combinations of data in the form of scalar, vector and SPD matrices, as
well as data on different manifolds. It is extensible to other matrix-valued Riemannian
manifolds, as long as the eigentensors decomposition of the covariance tensor can be
computed. Applications of our learning approach are showcased in the next chapter of
this thesis.
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“Y Learning Task-dependent
Requirements via
Manipulability Analysis

To do so, this chapter first presents a thorough manipulability-based analysis of human
motion patterns in industrial activities. Secondly, we discuss how manipulability pattern:
be transferred to robots via the probabilistic model presented in Chapter 3.

In the previous chapter, we introduced a geometry-aware probabilistic Yr
framework to learn symmetric positive definite (SPD) matrices from
demonstrations. This chapter focuses on a specific application of the Zp | Lr
aforementioned approach, namely learning sequences of manipulability

ellipsoids — which captures a posture-dependent ability to perform M).(*
motion and exert forces along different task directions — from human T
demonstrations. \

arms
S can

/Publication note

The material presented in this chapter is adapted from the following publications:

e Rozo, L., Jaquier, N., Calinon, S., and Caldwell, D. G. (2017). Learning manipu-
lability ellipsoids for task compatibility in robot manipulation. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), pages 3183-3189;

e Jaquier, N., Rozo, L., Caldwell, D. G., and Calinon, S. (2020b). Geometry-aware
manipulability learning, tracking and transfer. Intl. Journal of Robotics Research;

e Jaquier, N., Rozo, L., and Calinon, S. (2020c). Analysis and transfer of human
movement manipulability in industry-like activities. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS)

Supplementary material
Videos related to this chapter are available at:
https://sites.google.com/view/manipulability.

Source code
Source codes related to this chapter are available at:
\ https://github.com/NoemieJaquier /Manipulability.

~
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Chapter 4. Learning Task-dependent Requirements via Manipulability
Analysis
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(a) Pushing task (b) Pulling task

Figure 4.1 — Illustration of pushing and pulling tasks for which the posture of the humans
significantly influences their ability to carry out the task.

4.1 Introduction

Humans exhibit outstanding learning, planning and adaptation capabilities while perform-
ing different types of industrial tasks. Given some knowledge about the task requirements,
humans are able to plan their limbs motion in anticipation of the execution of specific
skills. For example, when an operator needs to drill a hole on a surface, the posture of
her limbs varies to guarantee a stable configuration that is compatible with the drilling
task specifications, e.g. exerting a force orthogonal to the surface.

In general, when performing manipulation tasks, we naturally put our limbs in a posture
that best allows us to carry out the task at hand given specific workspace constraints (see
also Figure 4.1). This posture adaptation alters the motion and strength characteristics of
our arms so that they are compatible with specific task requirements. For example, human
arm kinematics plays a central role when we plan point-to-point reaching movements,
where joint trajectory patterns arise as a function of visual targets [Morasso, 1981],
indicating that task requirements lead to arm posture variations. This insight was also
observed in more complex situations, where not only kinematic but also other biomechanic
factors affect the task planning [Cos et al., 2011]. For instance, Sabes and Jordan [1997]
observed that our central nervous system plans arm movements considering its directional
sensitivity, which is directly related to the arm posture. This allows humans to be
mechanically resistant to potential perturbations. Interestingly, directional preferences of
human arm movements are characterized by a tendency to exploit interaction torques for
movement production at the shoulder or elbow, indicating that the preferred directions
are largely determined by biomechanical factors [Dounskaia et al., 2014].
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4.1. Introduction

Roboticists have also investigated the impact of robot posture on manipulation tasks that
involve pushing, pulling and reaching. It is well known that by varying the posture of a
robot, we can change the optimal directions for motion generation or force exertion. This
has direct implications in hybrid control, since the controller capability can be fully realized
when the optimal directions for controlling velocity and force coincide with those dictated
by the task [Chiu, 1987]. In this context, the so-called manipulability ellipsoid [Yoshikawa,
1985b] serves as a geometric descriptor that, given a joint configuration, indicates the
capability to arbitrarily perform motion and exert a force along the different task
directions.

Manipulability ellipsoids have been used to analyze the coordination of the human
arm during reaching-to-grasp tasks for designing ergonomic environments [Jacquier-Bret
et al., 2012], and to study the swing phase of human walking motion [Miripour Fard,
2019]. However, analyses of the human arm manipulability remain limited to few
simple movements. Moreover, most of the conducted studies focus on the evolution
of the manipulability volume and isotropy. In contrast, considering the direction of
the major axis of manipulability ellipsoids has been proved useful in several human
movement analysis works, notably in exoskeletons design and control. Goljat et al. [2017]
used the shape of the muscular manipulability of the human arm for controlling arm
exoskeletons. They computed a varying support based on the main direction of the user’s
force manipulability. Inspired by human walking studies, Kim et al. [2010] proposed an
energy-efficient gait pattern for leg exoskeletons which aligns the direction of motion
with the major axis of the dynamic manipulability ellipsoid. While the major axis of
the ellipsoid provides some information about the arm movement, the importance of the
ellipsoid shape should not be neglected, as a low dexterity in motion along a specific axis
is closely related to a high flexibility in force along the very same direction [Lee, 1989].

Other geometric descriptors have been proposed in the literature to evaluate the velocity
or force performance of robots at a given joint configuration. In contrast to manipulability
ellipsoids that do not fully account for boundary limits in the space of joint velocities or
torques, manipulability polytopes provide a linear estimate of the exact joint constraints
in task space [Chiacchio et al., 1997; Lee, 1997]. Moreover, Ajoudani et al. [2015]
introduced the concept of stiffness feasibility region (SFR) to represent the non-polytopic
boundary where the realization of a desired Cartesian stiffness matrix is feasible. While
the polytope approaches provide a more accurate estimate of the velocity or force
generation capabilities of the robot compared to manipulability ellipsoids, their calculation
is computationally expensive. SFR is a particular Cartesian stiffness descriptor and
therefore does not generalize to other robot control settings. Manipulability ellipsoids are
easy to compute, while representing an intuitive estimate of the robot ability to perform
velocities, accelerations or exert forces along the different task directions.

In this chapter, we analyze single and dual-arm manipulability of human movements
during the execution of industry-like activities from a geometry-aware perspective. To do
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so, we use kinematic data records of several participants performing various activities such
as screwing and load carrying [Maurice et al., 2019]. Moreover, we consider an important
characteristic of manipulability ellipsoids that was often overlooked in the literature,
namely, the fact that they lie on the manifold of SPD matrices (see Section 4.2 for a short
background). We exploit differential geometry to statistically study the manipulability
profile of human movements. The mean and variance of the ellipsoids provide more
information about human motion than the classical manipulability indices related to
the ellipsoids volume and isotropy, as explained in Section 4.3. Finally, we introduce
the novel idea that the observed task-dependent patterns can be learned by robots as
manipulability requirements when executing similar tasks, bypassing the complexity
of kinematic mapping approaches. In Section 4.4, we address the problem of learn-
ing manipulability-based posture variation from a robot-learning-from-demonstrations
perspective by exploiting the framework introduced in Chapter 3.

4.2 Background: Manipulability Ellipsoids

Velocity and force manipulability ellipsoids introduced in [Yoshikawa, 1985b] are kineto-
static performance measures of robotic platforms. They indicate the preferred directions
in which force or velocity control commands may be performed at a given joint configura-
tion. More specifically, the velocity manipulability ellipsoid describes the characteristics
of feasible Cartesian motion corresponding to all the unit norm joint velocities. The ve-
locity manipulability of an n-DoF robot can be found by using the kinematic relationship
between task velocities & and joint velocities q,

& =J(q)q, (4.1)

where g € R” and J € R6*™ are the joint position and Jacobian of the robot, respectively.
Moreover, consider the set of joint velocities of unit norm ||§||>=1 describing the points
on the surface of a hypersphere in the joint velocity space, which is mapped into the
Cartesian velocity space R® with!

ldl* = ¢"¢=2"(JIT") ', (4.2)

by using the least-squares inverse kinematics solution g=J&=J"(JJT)"'d. Equation
(4.2) represents the robot manipulability in terms of motion, indicating the flexibility of
the manipulator in generating velocities in Cartesian space.?

In the literature, the velocity manipulability ellipsoid is usually defined as (JJ T)_l, whose
principal axes are defined by the eigenvectors whose length is the inverse of the square
root of the corresponding eigenvalues [Chiu, 1987]. For the sake of consistency, we here

'Scaling of the joint velocities may be used to reflect actuator properties.
2Dually, the force manipulability ellipsoid can be computed from the static relationship between joint
torques and Cartesian forces [Yoshikawa, 1985b].
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use an alternative definition of the velocity manipulability ellipsoid given by M?% = JJT.
So, its major axis is aligned to the eigenvector associated with the maximum eigenvalue
M®E

ax- Thus, the interpretation

)\%:; of M?%, whose length equals the square root of \
and representation of the manipulability ellipsoid from the corresponding matrix are
facilitated. Note that the major axis of M?® = JJT indicates the direction in which the
greater velocity can be generated, that in turn is the direction along which the robot
is more sensitive to perturbations. This occurs due to the principal axes of the force
manipulability being aligned with those of the velocity manipulability, with reciprocal

lengths (eigenvalues) due to the velocity-force duality (see [Chiu, 1987] for details).

Other forms of manipulability ellipsoids exist, such as the dynamic manipulability [Yoshikawa,
1985a], which gives a measure of the ability of performing end-effector accelerations
along each task-space direction for a given set of joint torques. This has shown to be
useful when the robot dynamics cannot be neglected in highly dynamic manipulation
tasks [Chiacchio et al., 1991b]. Recent works have extended this measure to analyze the
robot capacity to accelerate its center of mass for locomotion stability [Azad et al., 2017;
Gu et al., 2015], showing the applicability of the aforementioned tools beyond robotic
manipulation.

As mentioned previously, any manipulability ellipsoid M belongs to the set of SPD
matrices Sf  which describe the interior of a convex cone. Consequently, we must
consider this particular aspect to properly analyze and learn manipulability profiles. For
introductions to the corresponding Riemannian manifold and to the computation of
manipulability statistics (i.e., statistics on the SPD manifold), we refer the reader to
Sections 2.2.4 and 3.2, respectively.

4.3 Manipulability Analysis

Analyzing the manipulability of the human arms during various tasks may be relevant
to define desired manipulability ellipsoids of robots. The manipulability profile of a
user while performing a task may provide relevant information about task planning
and motion generation. For example, the main axis of the ellipsoid may indicate future
directions of motion, while a small manipulability may reveal a lack of velocity or force
control of an operator along specific directions. These aspects may notably be exploited
to better design and control exoskeletons and ergonomic devices. In this section, we
propose a detailed analysis of human arm(s) manipulability in industry-like activities by
exploiting the aforementioned mathematical tools.
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4.3.1 Data Description

For our analysis, we use the industry-oriented dataset presented in [Maurice et al.,
2019], which contains the whole-body posture data of 13 participants executing various
industry-related activities. Each participant executed the tasks in 5 consecutive trials for
3 predefined sequences. In this chapter, we consider 3 screwing motions and 2 carrying
tasks provided in the database. A screwing task consists of taking a screw and a bolt
from a 75 cm-high table, walking to a shelf and screwing (with bare hands) at a specific
height. The screwing movements realized at heights of 60 cm, 115c¢m and 175cm are
denoted by SL, SM and SH for screw-low, -middle and -high, respectively. A carrying
task involves taking a load from a 55 cm-high table, walking to a shelf and putting the
load on it. Loads of 5kg and 10kg are placed in shelves of 20cm and 110 cm high,
respectively. The corresponding tasks are denoted by C5 and C10. The participants
freely adapt their posture for each activity, as no explicit instructions were given for task
execution. Therefore, we expect the arms manipulability to reflect the features of the
natural motion of the participants.

The labels of the motions in all the trials are provided along with the dataset, including
the general and detailed posture, as well as the current action labeled by 3 independent
annotators. In this chapter, we study the human arm(s) manipulability according to
the current action for the aforementioned carrying and screwing tasks. For each trial,
we first identify the frames corresponding to each activity based on the labels and the
order of activities defined in the corresponding sequence. Then, we select the frames
corresponding to a subset of actions for each activity. The idea is to consider the motions
corresponding to the relevant activities that are reproduced by all the participants.
Therefore, we do not examine particular cases, e.g. when a screw falls on the ground and
the participant needs to pick it up. The subset of actions considered for a screwing motion
is composed of reaching (Re), picking (Pi), carrying (Ca), placing (PI), fine manipulation
(Fm), screwing (Sc) and releasing (RI) the screw and the bolt. Concerning the carrying
motion, we analyze the subset of actions composed of picking (Pi), carrying (Ca) and
placing (PI) the load.

The single- and dual-arm manipulability ellipsoids are computed for each time step of
the different actions of the screwing and carrying tasks for 15 trials of 13 participants.
The computation of the manipulability ellipsoids from the whole-body position and
orientation data is described next.

4.3.2 Human Manipulability Computation

As the manipulability is a function of the Jacobian, we need a kinematic model of
the human arm to compute its manipulability ellipsoid. In this chapter, we use the
identification method for anthropomorphic arm kinematics proposed in [Ding and Fang,
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Figure 4.2 — Human arm triangle model of 5 parameters.
The triangle vertex are located at the center of the
shoulder, elbow and wrist joints.

human arm
triangle

2013; Fang and Ding, 2013|. The typical anthropomorphic arm model, where the arm is
regarded as a 7-DoF manipulator, is exploited here along with the concept of human
arm triangle, the latter used for joint-to-task space mapping. Thus, the joint angles and
the corresponding Jacobian can be computed from the position and orientation of the
wrist in task space, which in our case is given in the database.

Specifically, the human arm triangle model, shown in Figure 4.2, is defined by 5 parameters:
the unit direction vector of the upper arm r, the unit normal vector of the human arm
triangle space I, the angle between the upper and lower arm «, the unit normal vector of
the plane of the palm (pointing outward the palm) p, and the unit direction vector of the
fingers f. The parameters {r,l, a} can be inferred from the wrist position in task space
(see [Ding and Fang, 2013] for details), while the parameters {p, f} directly represent
the wrist orientation. Moreover, it has been shown that the space spanned by the set
of parameters {r,l, o, p, f} has a one-to-one relation with the joint space spanned by
the seven joints {q1 ...qr} of the anthropomorphic arm model. The formulas for the
mappings {r,l,a} = {q1...q4} and {p, f} — {g5...q7} are given in [Ding and Fang,
2013] and [Fang and Ding, 2013], respectively. Also, the formulas of the forward and
inverse kinematic mappings based on the human arm triangle model are reported in
Appendix A.1.

This model allows us to compute the human arm Jacobian J. The arm velocity manip-
ulability ellipsoid is then computed as M% = JJ'. For dual-arm manipulation tasks,
such as carrying, we are interested in the manipulability ellipsoid of the dual-arm system.
In this case, the set of joint velocities of constant unit norm ||dq| = [|(¢],¢}) || =1 is

mapped to the Cartesian velocity space &4 = (&],&])T through

lqall* = 4 da = &3 (GY o] G "4, (4.3)
with Jacobian Jy = diag(J;, J;), grasp matrix G4 = (Gy, G,) and indices [ and r denoting
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the left and right arm, respectively. Therefore, the dual-arm velocity manipulability
is given by M? = GIITJdeTGE [Chiacchio et al., 1991a]. Note that we assume two
independent kinematic chains for the arms in the computation of J;. Moreover, the
system is modeled under the assumption that the arms are holding a rigid object with a
tight grasp. The force manipulability ellipsoid is the inverse of the velocity manipulability,
ie. MF = (M*)~L,

4.3.3 Analysis

For screwing motions, we study the single-arm velocity manipulability ellipsoids. Fig-
ure 4.3 shows the posture of a participant while executing this task at different heights,
along with the corresponding right-arm velocity manipulability ellipsoid. We observe
that the shape of the ellipsoids is similar for the three screwing motions, regardless of
the specified height. Namely, the ellipsoids shrink along the hand axis and isotropically
elongate along the other directions. This indicates a high precision along the hand
axis coupled with a high capability of motion on the orthogonal plane, where the hand
is moving to execute the rotative screwing motion. This shows that the human arm
manipulability is being adapted to the task requirements.

To study the evolution of the manipulability during the screwing task, a subset of
manipulability ellipsoids equally spaced in time is first selected by subsampling the
manipulability sequence of each action of the task. This results in a dataset containing
the same number of manipulability ellipsoids for each action across all trials. The
evolution of the right-arm velocity manipulability ellipsoid during the different screwing
tasks is studied in Figures 4.4a-4.4c. All the graphs show inter-participants statistics and
the ellipsoids are represented w.r.t the shoulder reference frame. The three top graphs
of each column display the mean of the velocity manipulability ellipsoid profile for the
corresponding task computed by (3.2). In each graph, the standard deviation of the
ellipsoid along the vertical axis, equal to the square root of the corresponding diagonal
element of the covariance tensor (3.4), is represented with error bars. For completeness,
the two bottom graphs of each column show the mean and standard deviation of two
classical manipulability indices, namely det(M) and cond(M), denoting the determinant
and condition number of M, respectively. The former approximates the manipulability
ellipsoid volume, while the latter relates to the ellipsoid isotropy.

Interestingly, we observe that the evolution of the manipulability mean during the task
is consistent across the screwing motions. The beginning and end of the task, namely Re
and Rl actions, are characterized by narrow ellipsoids along the y axis (i.e. the vertical
direction), due to the fact that the arm rests along the body. These also correspond to
actions displaying the highest variance. As in Figure 4.3, the velocity manipulability
mainly narrows along z and elongates along x and y during Fm and Sc actions for the
three screwing heights. Therefore, the manipulability of the participants is generally
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(a) SL (b) SM (c) SH

Figure 4.3 — Posture of the participant 541 during the screwing actions at 3 different
heights. The top row shows the Xsens avatar view, while the middle and bottom rows
display the skeleton model and right-arm velocity manipulability ellipsoid from 2 different
viewpoints, along with the right shoulder reference frame. The manipulability ellipsoids
are scaled by a factor 3 for visualization purposes.
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Figure 4.4 — Temporal evolution of the
single-arm velocity manipulability ellip-
soid for the screwing tasks. The inter-
participants statistics are displayed with
ellipsoids represented w.r.t the shoulder
reference frame. The three first rows
depict 2D-projections of the ellipsoids
mean, along with 3 standard deviations
of the vertical axis of the ellipsoid for the
specific graph. The two bottom rows dis-
play the mean and standard deviation of
the determinant and condition number
of the ellipsoid, respectively.



4.3. Manipulability Analysis

adapted to the task. Moreover, we notice that the ellipsoid shape along x and y is
generally similar from Ca to Sc actions. However, the manipulability ellipsoid is more
isotropic for carrying actions Ca. This is due to the fact that the participants usually
prepare for screwing after having picked the screw and the bolt, i.e., they do not put
back their arms at a neutral resting position but instead keep them in front of their
torso. Therefore, these manipulability ellipsoids indicate an arm posture adaptation that
anticipates the next action (i.e. planning phase), whose manipulability requirements are
more specific.

Another relevant observation is that the classical manipulability indices, namely the
determinant and condition number of the ellipsoids, tend to remain nearly constant during
the whole movement, except in the reaching (Re) and releasing (RI) phases. In contrast, as
emphasized previously, the shape of the velocity manipulability ellipsoid varies consistently
during the different actions of the screwing task. Then, the determinant and condition
number are uninformative measures that prohibit a proper human manipulability analysis.

Note that a similar analysis may be conducted for the velocity manipulability ellipsoids
of the left arm for the screwing tasks. The left arm manipulability evolves similarly as
the one of the right arm along the different actions. This is expected due to the presence
of strong symmetries between the arms in this particular task.

Regarding the carrying task, we analyze the dual-arm force manipulability. Figures 4.5a
and 4.6b show the posture of a participant executing the C5 and C10 tasks, respectively.
Similarly to the results reported in Figures 4.4a-4.4c for the screwing tasks, Figures 4.5b
and 4.6a depict the evolution of the dual-arm force manipulability ellipsoid during the
two carrying tasks. The inter-participant statistics are displayed and the ellipsoids are
represented w.r.t the neck reference frame.

We observe that the main axis of the force manipulability ellipsoids are clearly aligned
with the vertical axis during the Ca action. Therefore, the posture adopted by the
participants favor high force exertion along the vertical axis, which is necessary for
carrying heavy loads. However, we do not distinguish consistent differences in the
magnitude of the manipulability between the 5kg and 10kg loads. Furthermore, the
manipulability ellipsoids are almost isotropic at both the beginning of the Pi action and
during the Pl actions. This especially accentuates during Pl actions of the C5 task. This
may be attributed to the fact that the shelf where the load is placed is close to the ground,
which may require a different posture for this specific action. Overall, higher variations
are observed during the carrying tasks compared to those of the screwing tasks. This
may be associated with less-strict constraints in the carrying task when contrasted with
the screwing motions. Also, the perception of the load may differ across participants,
influencing the adopted postures.
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Figure 4.5 — Temporal evolution of the dual-arm force manipulability ellipsoid for the
carrying task C5. (a) depict the posture of the participant 541 during the Pi, Ca and PI
actions (from top to bottom). The dual-arm force manipulability ellipsoids (scaled by a
factor 0.03) are depicted along with the neck reference frame. The three first rows of
(b) show 2D projections of the ellipsoids mean, along with 1 standard deviation of the
vertical axis of the ellipsoid for the specific graph. The two bottom rows of () display the
mean and standard deviation of the determinant and condition number of the ellipsoid,
respectively. The inter-participant statistics are displayed with ellipsoids represented in
the neck reference frame.
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Figure 4.6 — Temporal evolution of the dual-arm force manipulability ellipsoid for the
carrying task C10. (b) depict the posture of the participant 541 during the Pi, Ca and
Pl actions (from top to bottom). The dual-arm force manipulability ellipsoids (scaled
by a factor 0.03) are depicted along with the neck reference frame. The three first rows
of (a) show 2D projections of the ellipsoids mean, along with 1 standard deviation of
the vertical axis of the ellipsoid for the specific graph. The two bottom rows of (a)
display the mean and standard deviation of the determinant and condition number of
the ellipsoid, respectively. The inter-participant statistics are displayed with ellipsoids
represented in the neck reference frame.
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4.4 Learning Manipulability Ellipsoids

The manipulability analysis of human movements can be exploited to teach manipulability-
based posture variations to robots executing similar tasks without the need of complex
kinematic mappings. To do so, the first open problem is to appropriately encode
sequences of demonstrated manipulability ellipsoids and subsequently retrieve a desired
manipulability profile that encapsulates the patterns observed during the demonstrations.
We tackle this problem from a learning-from-demonstrations perspective by exploiting
the GMM/GMR framework on SPD manifold introduced in Chapter 3. Namely, we first
encode a set of demonstrated manipulability ellipsoids over the manifold of SPD matrices
with a GMM. This probabilistic formulation models the trend of the demonstrated
manipulability sequences along with their variability, reflecting their dispersion through
the different demonstrations. After, a distribution of the desired manipulability ellipsoids
can be retrieved via GMR on the SPD manifold.

In order to illustrate the functionality of the proposed learning approach, we carried out
an experiment using a couple of simulated planar robots with dissimilar embodiments
and a different number of joints. The central idea is to teach a redundant robot to track a
reference trajectory in Cartesian space with a desired time-varying manipulability ellipsoid.
For the demonstration phase, a 3-DoF teacher robot follows a C-shape trajectory four
times, from which we extracted both the end-effector position x; and robot manipulability
ellipsoid M;(q), at each time step ¢. The collected time-aligned data were split into two
training datasets of time-driven trajectories, namely Cartesian position and manipulability.
We trained a classical GMM over the time-driven Cartesian trajectories and a geometry-
aware GMM over the time-driven manipulability ellipsoids, using models with five
components, i.e. C'=>5 (the number was empirically chosen by the experimenter).

During the reproduction phase, a 5-DoF student robot executed the time-driven task by
following a desired Cartesian trajectory &; computed from a classical GMR as &; ~ p(x|t).
As secondary task, the robot was also required to vary its joint configuration for matching
desired manipulability ellipsoids N ~ p(M]t), estimated by GMR over the SPD
manifold.

Figure 4.7 shows the four demonstrations carried out by the 3-DoF robot, where both
the Cartesian trajectory and manipulability ellipsoids are displayed. Note that the
recorded manipulability ellipsoids slightly change across demonstrations as a side effect
of the variation observed in both the initial end-effector position and the generated
trajectory. Also notice that manipulability ellipsoids are represented as ellipsoids in the
Cartesian space, while they correspond to points in the SPD manifold Sf .

Figure 4.7c. Figures 4.8a and 4.8b display the demonstrated ellipsoids (in gray) along

as shown by
with the center =, of the five components of the GMM encoding M. These are centered

at the end-effector position recovered by the classical GMR, for the corresponding time
steps represented in the geometry-aware GMM. Figure 4.8c shows the demonstrated
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Figure 4.7 — Four demonstrations of a 3-DoF planar robot tracking a C-shape trajectory.
(a) displays the end-effector path (light gray solid lines) in the task space R? and the
manipulability ellipsoids at different time steps are shown for all the demonstrations. (b)
shows the demonstrations independently to exhibit more clearly the differences produced
in the manipulability ellipsoids due to the robot posture variation across demonstrations.
(c) displays the demonstrated manipulability ellipsoids in the SPD cone Sf .- Position x
is given in centimeters.

ellipsoids on the cone Sﬁ . along with the centers E, and covariances Sy of the five
components of the GMM encoding M. Note that, as the demonstrated ellipsoids, the
centers =y corresponds to points on S_% o

an ellipsoid in the tangent space of the corresponding center Ey. Figure 4.9 shows the

while each covariance 8, is represented as

desired Cartesian trajectory and manipulability ellipsoid profile respectively estimated
by classical GMR and GMR in the SPD manifold. Both manipulability and Cartesian
path are references to be tracked by the student robot.

These results validate that the proposed learning framework permits to learn and plan
the reproduction of reference trajectories, while fulfilling additional task requirements
encapsulated in a profile of desired manipulability ellipsoids. The case of human-to-robot
manipulability transfer, in which a robot learns a profile of manipulability ellipsoids from
human demonstrations, is handled similarly to the simple planar example presented in
this section. Therefore, a GMM model would first be learned from the demonstrated
human manipulability (and other trajectories), as demonstrated in the planar example.
Then, GMR would be used to retrieve a distribution of manipulability ellipsoids (along
with other variables) that may be used by a robot to imitate the human manipulability
for the given task. However, in order to reproduce the learned task, the student robot
needs to track the desired manipulability profile obtained in the learning phase. To do so,
a manipulability tracking formulation is required. This second challenge will be tackled
in Chapter 5. The experiments involving robots learning human manipulability profiles
are reported in Chapter 6, where both the learning and reproduction phases will be
analyzed.
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Figure 4.8 — GMM encoding the four demonstrations of a C-shape trajectory. (a) displays
the demonstrated manipulability ellipsoids (in gray) and centers Zy of the 5-state GMM
in the SPD manifold. (b) shows the demonstrated manipulability ellipsoids over time (top
in color, bottom in gray), and the centers =y of the 5-state GMM in the SPD manifold
(bottom). (¢) displays the demonstrated manipulability ellipsoids (in gray) and centers
=, and covariances Sy of the 5-state GMM in the SPD cone Sf .- Position x and time ¢
are given in centimeters and seconds, respectively.
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Figure 4.9 — Desired execution of a C-shape tracking task. (a) shows the desired
Cartesian trajectory and manipulability profile depicted as a black curve and green
ellipsoids, respectively. (b)-top displays the desired manipulability ellipsoids estimated
by GMR over time. (b)-bottom illustrates the influence of GMM components on the
time-driven GMR. The colors match the distributions shown in Fig. 4.8. (¢) depicts the
desired manipulability profile on the SPD manifold Sf .
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4.5 Conclusion

The contributions of this chapter were two-fold. First, we presented a detailed analysis of
single and dual-arm manipulability ellipsoids for human movements during industry-like
activities. Statistical analyses considering the intrinsic geometry of the manipulability
ellipsoids were conducted on the kinematics data records of participants executing screwing
and load carrying tasks. Our work showed that the evolution of the manipulability ellipsoid
shape provides more information about human motion than the classical manipulability
indices classically used in the literature. Secondly, we introduced a geometry-aware
learning framework that allows the encoding and retrieval manipulability ellipsoids. Unlike
classical learning frameworks that encode reference position, velocity and force trajectories,
our approach offers the possibility of learning posture-dependent task requirements such
as preferred directions for motion and force exertion in operational space, which are
encapsulated in the demonstrated manipulability ellipsoids.

Given a desired manipulability ellipsoid profile and desired reference trajectories in
the form of Cartesian position or force, the goal of the robot is to reproduce the task
by tracking these reference trajectories. To do so, the next chapter will introduce
controllers allowing a robot to reproduce a desired manipulability profile by exploiting
its own redundant kinematic structure while minimizing the error between the current
manipulability ellipsoid and the desired one. Moreover, Chapter 6 will illustrate how the
manipulability analysis of human movements can be exploited to transfer manipulability-
based posture variation to robots executing similar tasks without the need of complex
kinematic mappings.
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Tracking Manipulability

Ellipsoids

The Part I of this thesis focused on learning SPD matrices from
demonstrations. After having learned a reference trajectory in the
form of SPD matrices, the goal of the robot is to reproduce the task
by tracking this sequence using appropriate controllers. The Part II of
this thesis tackles this challenge.

In this context, the following chapter introduces a novel tracking control scheme in which the
robot is requested to follow a desired profile of manipulability ellipsoids, either as its main task
or as a secondary objective. The proposed formulation exploits tensor-based representations
and takes into account that manipulability ellipsoids lie on the manifold of symmetric positive
definite (SPD) matrices.

(Publication note \

The material presented in this chapter is adapted from the following publications:

e Jaquier, N., Rozo, L., Caldwell, D. G., and Calinon, S. (2018). Geometry-aware
tracking of manipulability ellipsoids. In Robotics: Science and Systems (R:SS);

e Jaquier, N., Rozo, L., Caldwell, D. G., and Calinon, S. (2020b). Geometry-aware
manipulability learning, tracking and transfer. Intl. Journal of Robotics Research;

Supplementary material
Videos related to this chapter are available at:
https://sites.google.com /view/manipulability.

Source code
Source codes related to this chapter are available at:
https://github.com/NoemieJaquier/Manipulability.

Examples of manipulability tracking with the Centauro robot are available within

\ the PyRoboLearn toolbox. /
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Chapter 5. Tracking Manipulability Ellipsoids

5.1 Introduction

In the previous chapter, we proposed a manipulability-based analysis of human movements,
where we demonstrated that posture patterns arise during the execution of industrial
tasks. This validates the hypothesis that we, as humans, tend to adopt an appropriate
pose when carrying out manipulation tasks to help us regulate our motion and strengthen
our capability to achieve the given task. Moreover, we introduced a manipulability
learning framework that can retrieve a sequence of desired manipulability ellipsoids from
human demonstrations. In order to be able to reproduce the learned manipulability
profile for a given task, robots have to be endowed with adapted controllers.

Being aware of the impact of robot posture on reaching movements and manipulation
tasks, several works considered manipulability ellipsoids as means to analyze and modify
the posture of the robot to improve its performances during task execution. For example,
manipulability ellipsoids have been used to measure the compatibility of robot postures
with respect to fine and coarse manipulation [Chiu, 1987], and to improve minimum-time
trajectory planning using a manipulability-aware inverse kinematics algorithm [Chiacchio,
1990]. Vahrenkamp et al. [2012] proposed a grasp selection process that favored high
manipulability in the robot workspace. Other works have focused on maximizing the
manipulability ellipsoid volume in trajectory generation algorithms [Guilamo et al.,
2006], and task-level robot programming frameworks [Somani et al., 2016], to obtain
singularity-free joint trajectories and high task-space dexterity. Nevertheless, as stated
in [Lee, 1989], solely maximizing the ellipsoid volume to achieve high dexterity in motion
may cause a reverse effect on the flexibility in force.

The aforementioned approaches do not specify a desired robot manipulability for the
task. In contrast, Lee and Oh [2016] proposed an optimization method to find reaching
postures for a humanoid robot that achieved desired (manually-specified) manipulability
volumes. Similarly, a series of desired manipulability ellipsoids was predefined according
to Cartesian velocity and force requirements in dual-arm manipulation tasks [Lee, 1989].
Note that both Lee [1989] and Lee and Oh [2016] predetermined the task-dependent
robot manipulability, which required a meticulous and demanding analysis about the
motion that the robot needed to perform, which becomes impractical when the robot
is required to carry out a large set of different tasks. Furthermore, these approaches
overlooked an important characteristic of manipulability ellipsoids, namely, the fact that
they lie on the manifold of SPD matrices. This may influence the optimal robot joint
configuration for the task at hand.

In this chapter, we address the problem of tracking robot manipulability ellipsoids
from a novel geometry-aware control perspective. The proposed manipulability tracking
formulation is inspired by the classical inverse kinematics problem in robotics, where a first-
order differential relationship between the robot manipulability ellipsoid and the robot
joints is established, as explained in Section 5.2. This relationship also demands to consider
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that manipulability ellipsoids lie on the SPD manifold, which is here tackled by exploiting
tensor-based representations and differential geometry. Various exponentially-stable
manipulability tracking controllers are then derived from this relationship. The geometry-
awareness of our formulations is crucial for achieving successful manipulability tracking,
as shown in Section 5.3 by comparison against geometry-oblivious tracking approaches
and state-of-the-art manipulability-based optimization methods. Note that Riemannian
geometry has also been successfully exploited in robot motion optimization [Ratliff et al.,
2015] and manipulability analysis of closed chains [Park and Kim, 1998]. For sake of
clarity, different aspects of the proposed tracking approaches are illustrated with simple
examples using simulated planar robots throughout the chapter.

The proposed approach can be straightforwardly applied to different types of kineto-static
and dynamic manipulability measures and can integrate the robot actuators contribution.
This opens the door to manipulability tracking problems with various types of robots
where different task requirements at kinematic and dynamic levels are needed, which may
determine time-varying optimal directions for controlling a robot (e.g., velocity, force,
acceleration) to perform successfully. Moreover, the proposed mathematical development
is compatible with statistical methods providing 4th-order covariances (see Chapter 4),
which are here exploited to reflect the manipulability tracking precision required by
the task. This also allows our formulation to be easily combined with manipulability
learning frameworks, where desired manipulability ellipsoid profiles are obtained from
demonstrations of a specific task performed by either a human or a robot'. The
functionality of the proposed approach is extensively evaluated in different manipulability
tracking tasks involving a 7-DoF robot, a 16-DoF robotic hand and two legged robots
(see Section 5.4).

5.2 Tracking Manipulability Ellipsoids

Several robotic manipulation tasks may demand the robot to track a desired trajectory
with certain velocity specifications, or apply forces along different task-related axes.
These requirements are more easily achieved if the robot adopts a posture that suits
velocity or force control commands. In other tasks, the robot may be required to adopt
a posture that comply several aligned velocity or force requirements. These problems
can be viewed as matching a set of desired manipulability ellipsoids that are compatible
with the task requirements. In this section, we introduce an approach that addresses
this problem by exploiting the mathematical concepts presented in Sections 2.2.4, 2.3.2
and 2.3.4.

!The combination of the learning framework of Chapter 4 and the tracking framework presented in
this chapter will be covered in Chapter 6.

79



Chapter 5. Tracking Manipulability Ellipsoids

5.2.1 Manipulability Jacobian

Given a desired profile of manipulability ellipsoids, the goal of the robot is to adapt its
posture to match the desired manipulability, either as its main task or as a secondary
objective. We here propose a formulation inspired by the classical inverse kinematics
problem in robotics, which permits to compute the joint angle commands to track a
desired manipulability ellipsoid.

First, the manipulability ellipsoid is expressed as a function of time

M(t) = £(I(a)). (5.1)
for which we can compute the first-order time derivative by applying the chain rule as

.
al\gt(t) _ 8f(g;q» s 3%(;) — T(q) x34", (5.2)

where J € R6X6x7 i the manipulability Jacobian of an n-DoF robot, representing the
linear sensitivity of the changes in the robot manipulability ellipsoid M = m\gt(t) to

the joint velocity ¢ = 8%—?). Note that the computation of the manipulability Jacobian

depends on the type of manipulability ellipsoid that is used. We develop here the

expressions for the force, velocity and dynamic manipulability ellipsoids.

The derivation of the manipulability Jacobian J% corresponding to the velocity manipu-
lability ellipsoid M?% = JJ7 is straightforward by using (2.32) and (2.33) 2

. OJ oJT
jw:((TqXQJJra—qle. (5.3)

Similarly, the manipulability Jacobian J¥ corresponding to the force manipulability
ellipsoid M¥ = (JJT)~! is obtained using (2.32), (2.33) and (2.34),

.
JF:—<6‘;><2J+6{]><1J> x1 MF xo MF. (5.4)

In a similar fashion, the manipulability Jacobian J% corresponding to the dynamic
manipulability ellipsoid M? = YYT with ¥ = JA(q)~! (as defined in [Yoshikawa,
1985a], where A(q) is the robot inertia matrix), is computed as

;  0Y oxT

2In the remainder of the chapter we drop dependencies on g to simplify the notation.
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where
ox oJ OAN!
—_— = AT J
q q X9 + g X1
:ai XQA_T—BA XlTXQA_T.
dq doq

Details on the computation of the derivative of the Jacobian and inertia matrix w.r.t the
joint angles are given in Appendices B.1 and B.2.

5.2.2 Geometry-aware Manipulability Tracking Formulation
Velocity-based controller

A solution to control a robot so that it tracks a desired end-effector trajectory is to
compute the desired joint velocities using the inverse kinematics formulation derived
from (4.1). We use here a similar approach to compute the joint velocities ¢ to track a
desired manipulability profile. More specifically, by minimizing the norm of the residuals

min IM — T x34"||lr = min [mvec(M) — T {54ll¥,

we can compute the required joint velocities of the robot to track a profile of desired
manipulability ellipsoids as its main task with

G = (T l5)) Tmvec(M), (5.6)

where J(3) is the mode-3 matricization of the 3rd-order manipulability Jacobian tensor
and mvec(M) is the vectorization of the matrix M.

Note that (5.6) allows us to define a controller to track a reference manipulability
ellipsoid as main task, similarly as the classical velocity-based control that tracks a
desired task-space velocity. To do so, we propose to use a geometry-aware similarity
measure to compute the joint velocities necessary to move the robot towards a posture
where the error between the current manipulability ellipsoid M; and the desired one M, is
minimum. Specifically, the difference between manipulability ellipsoids is computed using
the logarithmic map (2.17) from the current manipulability M; on the SPD manifold.
Therefore, the corresponding controller is given by

G = (J}S))T K mvec (Loth (Mt)) : (5.7)

where Ky is a gain matrix.

Alternatively, for the case in which the main task of the robot is to track reference
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Figure 5.1 — Manipulability tracking as main task. The robot color goes from light gray
to black to show the evolution of the posture. Initial, final, and desired manipulability
ellipsoids are respectively depicted in yellow, dark purple, and green. The top rows show
close-up plots corresponding to the initial and final manipulability.

trajectories in the form of Cartesian positions or force profiles, the tracking of a profile
of manipulability ellipsoids is assigned a secondary role. Thus, the robot task objectives
are to track the reference trajectories while exploiting the kinematic redundancy to
minimize the difference between current and desired manipulability ellipsoids. In this
situation, a manipulability-based redundancy resolution is carried out by computing a
nullspace velocity that similarly exploits the geometry of the SPD manifold. Thus, the
corresponding controller is given by

G = ' Ko (80— @) + (L= ) (T}y))" Kpsmve <Loth(Mt)>, (5.8)

main task nullspace op. secondary task

where K, and Kp; are gain matrices for the position and manipulability terms.

Note that matricization and vectorization operations can be defined using Mandel notation
to alleviate the computational cost of the controllers using tensor representations, such
that
mvec (X:,;,l)T
Xa)= : (5.9)
mvec (X;,:7K)T

for 2x2x K third-order tensors, with mvec(+) as in (2.29).
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Figure 5.2 — Manipulability-based redundancy resolution with Cartesian position control.
The organization of the graphs and the colors are identical to Fig. 5.1.

Table 5.1 — Initial and final Riemannian affine-invariant distances d s¢ +(M , M) between
the current and desired manipulability for the experiments illustrated in Fig. 5.1 and 5.2.

Initial | Final
Fig. 5.1a | 1.342 0.199
Fig. 5.1b | 2.950 | 0.3217
Fig. 5.2a | 2.194 | 0.955
Fig. 5.2b | 1.612 1.495

Main task

Redundancy resolution

In order to show the functionality of the proposed approach where the goal of the robot
is to reproduce a given manipulability ellipsoid either as its main task or as a secondary
objective, we carried out experiments with a simulated 4-DoF planar robot. In the first
case, the robot is required to vary its joint configuration to make its manipulability
ellipsoid M; coincide with the desired one NI, without any task requirement at the
level of its end-effector. In the second case, the robot needs to keep its end-effector at
a fixed Cartesian position while moving its joints to match the desired manipulability
ellipsoid. Figures 5.1 and 5.2 show how the manipulator configuration is successfully
adjusted so that M, ~ M when the manipulability ellipsoid tracking is considered as the
main task or as a secondary objective (see also Table 5.1). These results show that our
geometry-aware controllers inspired by the inverse kinematics formulation are suitable to

solve the manipulability ellipsoid tracking problem.
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Stability analysis

We here analyze the stability properties of the proposed manipulability tracking controller
given the geometry of the underlying manifold. First of all, note that the dynamical
system operated by the controller (5.7) corresponds to

M = kpy Logps (M), (5.10)

where the controller gain is assumed to be a positive scalar value for sake of simplicity.
Then, we select the Lyapunov function V as

V(M) = (F,F)yy, (5.11)

where F' = Log, (M) is a vector field composed of the initial velocities of all geodesics
departing from the origin M, and (-, ) yr is the inner product (2.14). With this, we state
our first theorem:

Theorem 1. The function (5.11) is a valid Lyapunov function.

The proof of Theorem 1 is based on the following remark from [Pait and Colén, 2010]:

Remark 1. The function (5.11) is a Lyapunov function for a dynamical system M =
h(M) such that h(M) = 0 if the Lie derwative L,V (M) = 2(h, F)y is negative

everywhere except at the origin M.

Proof of Theorem 1. To verify the condition on L3V, we first express the velocity of the
dynamical system (5.10) in the tangent space of M using parallel transport as

Tosnp (M) = —ky; Logy, (M). (5.12)

The Lie derivative £,V of the proposed Lyapunov function for the dynamical system
(5.12) is given by

LV (M) = 2(—ky Logy (M), Logy (M)) vy

= 2k (Logy, (M), Logy, (M)) 4y
- oV (5.13)

Therefore, we have

V(M)>0, L,V(M)<0 ¥V M # M,
V(M) =L,V(M)=0 < M = M,

so that the function (5.11) is a valid Lyapunov function. O

84



5.2. Tracking Manipulability Ellipsoids

Our main theorem can then be stated based on Theorem 1:

Theorem 2. The controller (5.7) is exponentially stable.

The proof of Theorem 2 is based on the following remark from [Wu, 2020]:

Remark 2. The equilibrium point M s exponentially stable if the Lyapunov function
V(M) satisfies the two following conditions

e d’, (M,NI)<V(M)<cyd, (M,DN), (5.14)
Sty Sty

LV (M) < —c3 d@L(M, M), (5.15)

with p >0, ¢; >0 fori={1,2,3} and d31+(-, -) the affine-invariant distance (2.15).

Proof of Theorem 2. The Lyapunov function (5.11) can be equivalently expressed as

V(M) = di,d (M, M). Therefore, the conditions (5.14) and (5.15) hold with p = 2,
it

0<ec1 <1,¢c0>1and cg =2ky > 0. ]

Finally, it can be easily shown that this result holds with c3 = 2Anmin (K ;) for a positive-
definite controller gain matrix Ky, where Amin(+) returns the minimum eigenvalue of

the matrix.

Note that the Lyapunov function (5.11) is similar to the one usually defined to demonstrate
the exponential stability of the classical inverse kinematic-based velocity controller
G = J' K, (£; — z;). In that case, the Lyapunov function is defined as V(z) = (& —
x)T (& — x), which is equivalent to the inner product (e, e) with the error e = & — x.
In the case of manipulability tracking, the inner product (-,-) is defined in the SPD
manifold and the error e is computed as Logy, (M). Finally, it is worth highlighting
that when the manipulability tracking is assigned a secondary role, the controller (5.8)
does not influence the stability of the main task of the robot as the manipulability-based

redundancy resolution is carried out in the corresponding nullspace.

Acceleration-based controller

Similarly to the velocity-based controller, we propose a geometry-aware acceleration-
based controller that allows the computation of the joint accelerations § required to
track a desired manipulability trajectory (i.e. desired manipulability and manipulability
velocity profiles). The approach is inspired by the inverse kinematics formulation and
its differential relationships used to compute the joint accelerations necessary to track
desired end-effector positions and velocities.

To formalize the acceleration-based controller, let us first define the second-order time
derivative of the manipulability ellipsoid computed from (5.2) by applying the product
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rule
0?M (t)

ot?
(see Appendix B.3 for details on the computation of J(q)). So, by minimizing the

=TJ(q) x3d" +T(q) x34", (5.16)

£?-norm of the residuals, we can compute the required joint accelerations of the robot to
track a desired trajectory of manipulability ellipsoids as its main task with

q= (ng))T (mvec(M) - .g)Q). (5.17)

Similarly as in the classical acceleration-based controller that tracks a desired end-effector
trajectory, we can define a controller to track a reference manipulability ellipsoid trajectory
based on (5.17). To do so, we exploit the geometry of the SPD manifold to compute the
difference between the current manipulability ellipsoid M; and the desired one Mt, as
previously specified for the velocity-based controller. Moreover, since the first-order time
derivative of manipulability ellipsoids lies on the tangent space of the SPD manifold (i.e.
the space of symmetric matrices S/}gnd), the difference between the current manipulability

velocity M, and the desired one M, is computed as a subtraction in the Euclidean space.
Therefore, a reference manipulability acceleration command can be specified by

mvec(M;) = K,mvec <L0th(Mt)> + K mvec (Mt - Mt), (5.18)

which resembles a proportional-derivative controller where K, and K are gain matrices.
Then, the reference joint acceleration ¢ can be computed using (5.17) and (5.18). Note
that this reference joint acceleration can correspond to a main task of the robot or to
a secondary tracking objective. In the latter case, a manipulability-based redundancy
resolution can also be implemented in a similar way as (5.8).

5.2.3 Actuators Contribution

In many practical applications, the joint velocities of the robot are limited. The definition
of manipulability ellipsoid can then be extended to include these actuation constraints,
as shown in [Lee, 1997]. We here provide the definition of the force, velocity and dynamic
manipulability ellipsoids and the corresponding manipulability Jacobians considering
joint actuation constraints.

To include the joint velocity constraints of the robot in the definition of the velocity
manipulability ellipsoid, we use the following weighted forward kinematics formulation

&= (JW9) (Wi lg), (5.19)
—_——— ——
J d
where W4 = diag(¢1,max; - - - » §n,max) is @ diagonal matrix whose elements correspond to
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the maximum joint velocities of the robot. Then, considering the set of joint velocities of
constant unit norm ||¢|| = 1 mapped into the Cartesian velocity space through

1§12 =§'§=2"(JJ") "4, (5.20)
the velocity manipulability ellipsoid is given by M#* = JJT = JWIW4TJT, which
represents the flexibility of the manipulator in generating velocities in Cartesian space
considering its maximum joint velocities as illustrated in Figure 5.3a. Note that the
actuators contribution WIW 49T also has a geometrical interpretation based on the fact
that the robot joint position g lies on the flat n-torus manifold [Park, 1995].

By following the methodology of Section 5.2.1, the change in the robot manipulability
ellipsoid is related to the joint velocity via

P F@ (521

Therefore, the velocity manipulability Jacobian including joint velocity limits is given by

FEo 0 ywawT 87 %1 JWIW 4T, (5.22)
dq dq

Figure 5.3b shows the effect of including the actuator contribution when tracking a
velocity manipulability ellipsoid. Notice that the robot joint ¢ significantly moves when
given the highest velocity limit. In contrast, its influence on the manipulability tracking
task is minimal when given the lowest velocity limit. This demonstrates the importance
of considering the robot actuator specifications when tracking manipulability ellipsoids
in real platforms.

In a similar way, the force manipulability ellipsoid considering the maximum joint torques
is defined as M¥ = (JQTI) ™ where Q"= (WW™ )~ land W™ = diag(7T1 max; - - - » Tn,max)-
Then, the corresponding manipulability Jacobian is given by

oJT

jF:_ <8J X9 JQT + — X3 JQT> X1 MF X9 MFE.

dq 0q

Finally, the dynamic manipulability ellipsoid considering the maximum joint torques is
M?* =YQ7 YT with corresponding manipulability Jacobian defined as

— = TQT*l
dq X2 +

X1 Y™ (5.23)
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Figure 5.3 — Illustration of actuators contribution. (a) Velocity manipulability ellipsoids
obtained when setting a maximum joint velocity, for each joint, five times higher than
the rest. The manipulability corresponding to equal maximum joint velocity is shown
in gray. (b) Joint trajectories obtained with manipulability tracking (as in Fig. 5.1) for
equal maximum joint velocities (top), highest velocity limit for ¢; (middle), and lowest
velocity limit for g1 (bottom).

5.2.4 Exploiting 4th-order Precision Matrix as Controller Gain

An open problem regarding the proposed tracking approach is how to specify the values
of the gain matrix Ky, which basically determines how the manipulability tracking error
affects the resulting joint velocities. In this sense, we propose to define Kjps as a precision
matrix, which describes how accurately the robot should track a desired manipulability
ellipsoid. In learning from demonstration applications, such gain matrix would typically
be set as proportional to the inverse of the observed covariance S (see Chapter 4). This
encapsulates variability information of the task to be learned. Our goal here is to exploit
this information to demand the robot a high precision tracking for directions in which
low variability is observed, and vice-versa.

We therefore introduce the required precision S~! for a given manipulability tracking
task into the controllers defined in Section 5.2.2. To do so, we define the gain matrix Ky
as a function of the precision tensor. Specifically, we define the controller gain matrix as
a full SPD matrix, which is computed from the matricization of the precision tensor S™*
along its two first dimensions, with a proportion defined by

Kn o Sy (5.24)

To show how precision matrices work as controller gains in our manipulability tracking
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problem, we tested different forms of Kps aimed at reproducing a given manipulability
ellipsoid as a main task with a simulated 4-DoF planar robot. The robot is required
to move its joints to track a desired manipulability ellipsoid, where the controller gain
matrix Ky is a diagonal matrix with the diagonal elements of (5.24) to take into account
the variation of each component of the manipulability ellipsoid. We tested four different
precision tensors. First, equal variability for all components of the manipulability ellipsoid
matrix is given. Then, the variability along the first or the second main axis of the
manipulability ellipsoid, corresponding to the first and second diagonal elements of the
gain matrix Ky, is reduced. This means that the robot needs to prioritize the tracking
of one of the ellipsoid main axes over the other. In the fourth test, the variability of the
correlation between the two main axes of the manipulability ellipsoid is lowered. In this
last case, the manipulability controller prioritizes the tracking of the ellipsoid orientation
over the shape.

Figure 5.4 shows how the manipulator posture is adapted to track the desired manip-
ulability ellipsoid with a priority on the component with the lowest variability. Note
that, when high tracking precision is required for one of the main axes of the ellipsoid,
the robot initially seeks to fit the shape of the ellipsoid along that specific axis, and
subsequently it matches the whole manipulability ellipsoid. In this case, the precision
ratio between the prioritized and the rest of components of the gain matrix is 10: 1.
When high tracking precision is assigned to the correlation of the ellipsoid axes, the robot
first tries to align its manipulability with the orientation of the desired ellipsoid, and
afterwards the whole manipulability is matched. In this case, the precision ratio between
the prioritized correlation and the other components of the gain matrix is 3:1. Notice
that the precision tensor naturally affects the computed joint velocities required to track
a given ellipsoid, which consequently influences the resulting motion of the end-effector
as a function of the precision constraints, as shown in Figure 5.4e. After convergence,
the desired manipulability ellipsoid is successfully matched for all experiments. These
results show that our geometry-aware tracking permits to take into account the variability
information of a task to define the manipulability tracking precision.

Therefore, our manipulability tracking approach may be readily combined with the
manipulability learning framework introduced in Chapter 4. In order to illustrate this,
we show the reproduction phase of the experiment carried out in Section 4.4. The 5-DoF
student robot was requested to track a desired Cartesian trajectory as main task, while
varying its joint configuration for matching desired manipulability ellipsoids as secondary
task. The student robot used the geometry-aware controller defined by (5.8), where
K s was defined either as a scalar value or as a diagonal matrix with the diagonal
elements of (5.24) with the precision tensor being equal to the inverse of the covariance
tensor Siz retrieved by GMR (3.28). Our goal here was to exploit the learned variability
information of the task to demand the robot a high precision tracking where low variability
was observed in the demonstrations, and vice-versa. Successful reproductions of the
demonstrated task using our manipulability-based redundancy resolution controller with
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Figure 5.4 — Manipulability tracking as main task with diagonal gain matrices defined
from different precision tensors. The top plots depict the end-effector trajectory (solid
colored line) and the posture of the robot along with the corresponding manipulability
at time ¢ = 0, 0.25 and 1s. The evolution of the manipulability along time is shown in
the bottom plots. (a): equal tracking precision for all components. (b) and (¢): tracking
precision is 10:1 higher for z; and x9, respectively. (d): correlation between x; and xo
axes is assigned a high tracking accuracy. (e) Evolution of the robot manipulability and
end-effector trajectory for the gain matrices used in (a)-(d). The colors match those of
the previous graphs. Initial and desired manipulability ellipsoids are depicted in dark
blue and green on all graphs. Time ¢ is in seconds.
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(a) Kpr as a scalar value (b)) Kps retrieved from GMR

Figure 5.5 — Reproductions of a learned C-shape tracking task with desired manipulability
ellipsoids. The end-effector trajectory is shown in black solid line, while the desired and
reproduced manipulabilities are depicted in green and dark purple, respectively. (a) Kps
is a scalar value, (b) Kps is the diagonal of the precision tensor retrieved by GMR. The
required tracking precision is higher at the start and end of the task as a consequence of
the low observed variability.

scalar and variability-based matrix gains are shown in Figures 5.5a and 5.5b, respectively.
Note that the variability-based matrix gain changes the required tracking precision, where
higher precision is enforced only at the beginning and the end of the task, which results
in lower control efforts in between. These results validate that the proposed approach
allows the robot to reproduce reference profiles of desired manipulability ellipsoids while
adapting the tracking precision according to the demonstrated requirements of the task.

5.2.5 Nullspace of the Manipulability Jacobian

As traditionally done when designing redundancy resolution controllers, the nullspace
of the manipulability Jacobian can also be exploited to fulfill secondary objectives
when manipulability tracking is the main task or corresponds to a task with higher
priority in multi-task scenarios. More specifically, a joint velocity ¢y, aimed at fulfilling
secondary objectives, can be projected into the nullspace of our manipulability tracking

controller (5.7) using the nullspace operator (I —(TJ 13))T:7 2;,))) Therefore, the resulting

redundancy resolution controller is given by

Qt:(erg))T Ky mvec (Loth(MtD + (I - (J&))TJE;D gn. (5.25)

In order to show the functionality of this nullspace operator, we carried out experiments
with a simulated 6-DoF planar robot. The main task of the robot is to track a desired
manipulability ellipsoid while keeping a desired pose for its first joint g, which is consid-
ered as secondary task. Thus, the nullspace velocity is defined as a simple proportional
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Figure 5.6 — Use of the nullspace of the manipulability Jacobian. Two 6-DoF planar
robots are required to track a desired manipulability ellipsoid as main task (green ellipses).
The black robot also keeps its first joint at a fixed position (depicted by the green link),
which is a secondary objective projected into the nullspace of the manipulability Jacobian.
The final manipulability ellipsoids (in purple) fully overlap the desired ones, showing a
precise manipulability tracking. The initial manipulability ellipsoid is depicted in yellow.

controller gy = K;) (4§ — q:) where § is the desired joint configuration and Kf is a
matrix gain defined so that only joint position errors in the first joint are compensated.
Figure 5.6 shows that the black manipulator configuration is adjusted to track the desired
manipulability ellipsoid and keep, as accurately as possible, the desired joint position for
go- Note that the black robot is able to find an alternative joint configuration that permits
not only to closely track the desired manipulability, but also fulfill secondary objectives
projected into its nullspace, in contrast to the blue robot which exclusively implements a
manipulability tracking task. These results show that the nullspace of the manipulability
Jacobian is suitable to carry out a secondary task along with manipulability tracking as
main objective.

5.3 Importance of Geometry-awareness for Manipulability
Tracking

In the previous sections we introduced different types of geometry-aware manipulability
tracking controllers. In this section, we show that the geometry-awareness of our
formulations is crucial for successfully tracking manipulability ellipsoids in addition to
providing an appropriate mathematical treatment of the problem.

5.3.1 Comparisons with Euclidean Tracking

We first compare the proposed tracking formulation against a controller ignoring the
geometry of SPD matrices (i.e., treating the problem as Euclidean). Moreover, we evaluate
our controller when the tracking of manipulability ellipsoids is assigned a secondary
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role. This evaluation compares our formulation against three Euclidean controllers, and
the gradient-based approach presented in [Rozo et al., 2017]. For the case in which the
manipulability tracking is the main objective, we consider a 4-DoF planar robot that is
required to track a desired manipulability ellipsoid by minimizing the error between its
current and desired manipulability ellipsoids M and NI. We first compare the proposed
approach (5.7) with the following Euclidean manipulability tracking controller

G = (T L)) T Kymvec(M; — M), (5.26)

where the difference between two manipulability ellipsoids is computed in Euclidean space,
i.e., ignoring that manipulability ellipsoids belong to the set of SPD matrices. Secondly,
we compare the proposed approach to the Cholesky-based Euclidean manipulability
controller

G = («713))TKvaec(ALtAL2—), (5.27)

where AL = L — L and matrices L are obtained from the Cholesky decomposition
of M, such that M = LLT. This controller ensures that the difference between two
manipulability ellipsoids is positive definite, but ignores that they belong to the SPD
manifold. For completeness, we also compare our approach with the Cholesky-Jacobian-
based Euclidean manipulability controller

G = (chhol(S))TKM vec(L — L), (5.28)

where Johol = % = (;STL/IJ is the Cholesky-based manipulability Jacobian, so that

L = Juol X3 7. This approach tracks a desired manipulability solely through its
Cholesky decomposition with an adapted manipulability Jacobian. Similarly to (5.27),
it ensures the positive-definiteness of manipulability ellipsoids, but ignores that they
belong to the SPD manifold. For all the following comparisons, the gain matrices Kps
are identity matrices.

Figure 5.7 shows the convergence rate for the proposed geometry-aware controller, the
Fuclidean-based approach, the Cholesky-based Fuclidean and Cholesky-Jacobian-based
Euclidean formulations. Two tests were carried out by varying the initial configuration
of the robot and the desired manipulability ellipsoid. In the first case, the Euclidean and
geometry-aware formulations converge to similar robot joint configurations with a distance
between the current and desired manipulability close to zero (see Figures 5.7a-left, middle
and Table 5.2). However, in the second test, the Euclidean formulation induces a sudden
change in the joint configuration, resulting in an abrupt increase on the error measured
between the current and desired manipulability ellipsoids (see Figures 5.7b-left, middle).
In real scenarios, such unstable robot behavior would certainly be harmful and unsafe.
This erroneous tracking performance can be explained by the fact that the Euclidean
path between two SPD matrices is a valid approximation of the geodesic only if these are
close enough to each other, as shown in Figure 5.7a-right. When this approximation is
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Table 5.2 — Final distances d s¢ +(M , M) between the current and desired manipulabil-

ity ellipsoids for the performance comparison of the different manipulability tracking
formulations.

Approach | Euclidean (after jump) | Cholesky (after jump) | Cholesky Jacobian | Geometry-aware
Fig. 5.7a | 1.3¢7* - 1.446 - 0.1204 6e®
Fig. 5.7b 2.997 3.977 3.385 1.944 0.455 1.4e™%

not valid (see Figure 5.7b-right), the Euclidean controller outputs inconsistent reference
joint velocities that destabilize the robotic system, therefore failing to track the desired
manipulability. Note that the Cholesky-based Euclidean formulation does not converge in
both cases (see Table 5.2) and induces a sudden change in joint configuration of the robot
in the second scenario, similarly to the Euclidean formulation. This can be explained
by the fact that the path induced by this method is not close to geodesics on the SPD
manifold as shown by Figure 5.7-right. As opposed to the two Euclidean formulations, the
Cholesky-Jacobian-based Euclidean controller does not induce unstable robot behaviors
and converges towards the desired manipulability ellipsoid for both cases. However, this
method shows a poor convergence rate compared to our geometry-aware approach, as
shown by Fig. 5.7-left. This can be explained by the fact that, although this approach
generates curved paths on the SPD manifold, these paths do not resemble geodesics and
tend to induce detours to reach the desired manipulability ellipsoid (see Fig. 5.7-left).
This is particularly visible for the second test, where the resulting joint configuration is
farther from the initial pose of the robot compared to the joint configuration obtained
by the proposed geometry-aware controller (see Fig. 5.7b-middle, right).

Previously, we hypothesized that the sudden changes in joint configuration when using
the Euclidean and Cholesky-based Euclidean formulations in the second scenario are
due to the path induced by the methods on the SPD manifold. In order to confirm
this hypothesis, we reproduced the second test with lower gain values. Figure 5.8
shows the convergence of the proposed geometry-aware controller, the Euclidean-based
approach and the Cholesky-based Euclidean formulation for gain matrices equal to I,
0.51, 0.1 and 0.05I. We observe that, even for very low gains, both Euclidean and
Cholesky-based Euclidean formulations lead to a sudden change in the joint configuration,
resulting in an abrupt increase on the error measured between the current and desired
manipulability ellipsoids (see Figure 5.8-left, middle). Interestingly, the sudden changes
occur at similar location along the path between the initial and desired manipulability
ellipsoid independently of the gain value for both formulations (see Figure 5.8-right),
therefore confirming our above statement. This can also be seen by looking at the yellow
and dark blue robots of Figure 5.8-middle depicting the configurations before the jump,
which are almost identical in all the graphs.
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Figure 5.7 — Performance of different manipulability tracking formulations. The left
graphs show the affine-invariant distance between the current and desired manipulability
ellipsoids over time. The distances for the Euclidean, Cholesky-based Euclidean, Cholesky-
Jacobian-based Euclidean and geometry-aware approaches are respectively depicted in
blue, yellow, lila and red. The middle graphs display the initial and final robot postures
and the final manipulability ellipsoids. The initial posture is depicted in light gray,
while the final posture and corresponding manipulability for the three methods are
depicted in the same color as the distances. The desired manipulability is depicted in
green. Middle-(b) also shows the sudden change in the robot posture for both Euclidean
methods (5.26) and (5.27). The robot posture before and after the abrupt change is
shown in blue and light blue, respectively for (5.26) and in yellow and olive, respectively
for (5.27). The right graphs depict the evolution of the manipulability ellipsoids in the
SPD manifold. The colors correspond to those of the previous graphs with the green
dot representing the desired manipulability. The isolated light blue and olive dots in the
right-(b) graph represent the manipulability ellipsoids after the abrupt changes in the
robot joint configuration.
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Figure 5.8 — Comparison of the performance of different manipulability tracking formula-
tions for different gains Kps.The organization of the graphs and the colors are identical
to Fig. 5.7. The Cholesky-Jacobian-based Euclidean formulation is not shown.
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In the case in which the manipulability tracking task becomes a secondary objective, the
4-DoF planar robot is required to keep its end-effector at a fixed Cartesian position &
while minimizing the distance between its current and desired manipulability ellipsoids M
and M. The four following approaches are considered for comparison with the proposed
formulation (5.8). Firstly, we analyze the corresponding Euclidean manipulability-
tracking controller

G = JTK (& — ;) + (I — J1J) (T 3) " Kymvee(M; — M), (5.29)

main task nullspace op. secondary task

where the difference between two manipulability ellipsoids is computed in Euclidean
space, i.e., ignoring that manipulability ellipsoids belong to the set of SPD matrices.
Secondly, we implement the corresponding Cholesky-based Euclidean manipulability
controller

G = J K (& — @)+ (I — J7 J)(J}S) VTKpmvec(AL;AL]), (5.30)

which ignores that manipulability ellipsoids lie on the SPD manifold but ensure a positive
definite difference between two ellipsoids. Thirdly, we analyze the Cholesky-Jacobian-
based Euclidean manipulability controller

G = JTK (& — ;) + (I = JWI)(T L oy3) T K mvee(L - L), (5.31)

which tracks manipulability ellipsoids through their Cholesky decomposition. Fourthly,
we evaluate the gradient-based approach of [Rozo et al., 2017] that implements the
controller

G = J Ky (& —a¢) — (I — J'J)aVgl(q), (5.32)

where « is a scalar gain and

N+ M 1 .
9:(q) = log det (t—;t) —5 log det (MtMt> (5.33)
is a cost function based on Stein divergence (a distance-like function on the SPD
manifold [Sra, 2012]). The gain matrices Kps are fixed as identity matrices and the
scalar gain is set to 1 for the comparison.

Figure 5.9 shows the convergence rate for the manipulability-based redundancy resolution
of the aforementioned approaches. Two tests were carried out by varying the initial
configuration of the robot and the desired manipulability ellipsoid. In both cases,
both geometry-aware and gradient-based approaches converge to a similar final robot
configuration (see Figures 5.9a, 5.9b-middle), with similar values of the affine-invariant
distance between the final and desired manipulability ellipsoids (see Figures 5.9a, 5.9b-
left and Table 5.3). More importantly, the proposed geometry-aware manipulability
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Figure 5.9 — Performance comparison of the different manipulability-based redundancy
resolution formulations. Two cases are shown with varying initial robot configuration
and desired manipulability. The left graphs show the convergence of the affine invariant
distance between the current and the desired manipulability ellipsoid over time. The
distances for the Euclidean, Cholesky-based Euclidean, Cholesky-Jacobian-based Eu-
clidean, geometry-aware and gradient-based approaches are respectively depicted in blue,
yellow, lila, red, and purple. The middle graphs show the initial and final posture of the
robot along with the final manipulability ellipsoids. The initial posture of the robot is
depicted in light gray. The final postures and the corresponding manipulability ellipsoids
for the different methods are depicted in the same color as the distances. The desired
manipulability ellipsoid is depicted in green. The right graphs show the evolution of the
manipulability ellipsoids over time for the different approaches.
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Table 5.3 — Final distances d st (M , M) between the current and desired manipulability

ellipsoids for the performance comparison of the different manipulability-based redundancy
resolution formulations.

Approach| Euclidean| Cholesky | Cholesky Jacobian| Geometry-aware | Gradient-based
Fig. 5.9a 0.433 0.808 1.418 0.416 0.436
Fig. 5.9b 1.763 2.271 1.856 1.101 1.110

tracking approach shows a faster convergence than the gradient-based method (see also
Figures 5.9a, 5.9b-right), with a lower computational cost (3.5 ms and 4.2 ms per time
step, with non-optimized Matlab code on a laptop with 2.7GHz CPU and 32 GB of RAM).
This notable difference may be attributed to the fact that despite both methods take
into account the geometry of manipulability ellipsoids, our approach is more informative
about the kinematics of the robot through the use of the manipulability Jacobian J(q).

Note that for some specific initial robot configurations and desired manipulability el-
lipsoids, the Euclidean manipulability-tracking controller (5.29) shows a slightly faster
convergence rate than our method (see Figure 5.9a). However, this Euclidean formulation
again leads to unstable behaviors in some configurations (see Figure 5.9b), where the
distance between the final and desired manipulability ellipsoids remains high compared to
the two geometry-aware approaches. This poor tracking performance can be attributed
to the fact that the Euclidean difference between two SPD matrices is an approximation
that is only valid if the matrices are close enough to each other. Thus, similarly to
Euclidean controller aimed at tracking manipulability ellipsoids as first task (5.26), the
Euclidean manipulability-based redundancy resolution is only effective if the current
and desired ellipsoids are very similar. Moreover, the distance between the final and
desired manipulability ellipsoids remains higher than for the three other methods by
using the Cholesky-based Euclidean manipulability-based redundancy resolution. This
tendency is similar to the observations made for the tracking of manipulability ellipsoids
as main objective and is due to the fact that the controller (5.30) induces paths on the
manifold that are not close to geodesics. Furthermore, the Cholesky-Jacobian-based
Euclidean controller shows a poor tracking performance for the two considered scenarios.
Notably, the distance between the current and desired ellipsoids is largely increased
before decreasing slowly in the first case (see Fig. 5.9a). Moreover, in some configurations,
the final distance remains high compared to the geometry-aware approaches as shown by
Fig. 5.9b. These behaviors are due to the fact that the controller (5.31) does not follow
geodesic paths on the SPD manifold.

The reported results supported our hypothesis that geometry-aware manipulability
controllers result in good tracking performance while providing stable convergence
regardless of the manipulability tracking error. This was observed when manipulability

99



Chapter 5. Tracking Manipulability Ellipsoids

tracking was the main task and a secondary objective of the robot. Moreover, our
manipulability-based redundancy resolution approach outperforms the gradient-based
method. Furthermore, our controller permits to directly exploit the variability information
of a task, given in the form of a 4th-order covariance tensor, through the gain matrix
of the controller. This allows the robot to exploit the precision required while tracking
a manipulability ellipsoid either as main or secondary objective. This operation is not
available in the gradient-based method used for comparison, since the corresponding
controller gain is a scalar.

5.3.2 Comparisons with Manipulability-based Optimization

We compare our tracking approach against two state-of-the-art manipulability-based
optimization methods widely used to improve robots posture for task execution. We
first evaluate our geometry-aware controller against manipulability volume maximization.
Then, we compare our controller to the compatibility index maximization [Chiu, 1987],
where the distance from the ellipsoid center to its surface is maximized along a specified
direction. To do so, we consider two 8DoF planar robots that are required to track a
desired Cartesian velocity trajectory that leads to an L-shape path in the Cartesian space.
In order to achieve high dexterity in motion, the first robot is requested to track a desired
manipulability ellipsoid whose main axis is elongated along the direction of motion. The
second robot varies its posture in order to maximize either the manipulability volume or
the compatibility index along the direction of motion.

Figure 5.10a shows the resulting joint configurations and manipulability ellipsoids of the
two robots at different stages of the task where the second robot maximizes the manipula-
bility volume as secondary objective. We observe that the main axis of the manipulability
ellipsoid obtained with the volume maximization approach is often perpendicular to the
direction of motion, which often occurs as this method does not consider any geometric
information about the desired manipulability ellipsoid. Also, since the resulting posture
leads to ellipsoids that are not consistent with the task requirement (task velocity control
directions) and degrade the robot capabilities, this becomes unstable when the gain of
the velocity tracking controller is increased to achieve higher Cartesian velocities, as
shown in Figure 5.11. Conversely, the robot tracking a desired manipulability ellipsoid
successfully completes the task even when higher velocities are required.

The main advantage of maximizing the compatibility index over the volume is that the
directions in which the ellipsoid should be elongated are specified. However, this approach
favors robot configurations that may be close to singularities as the manipulability
ellipsoids corresponding to these posture are flat ellipsoids that can be largely elongated
(see Figure 5.10c). This effect exacerbates when the compatibility index maximization is
the main task of the robot, as this is not required to match a specific position in Cartesian
space. Chiu [1988] extended the compatibility index optimization approach by defining
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Figure 5.10 — (a) Comparison of our manipulability tracking controller (in purple) with
the manipulability volume maximization (in yellow). The main axis of the desired
manipulability ellipsoids (in green) are aligned with the direction of motion in order to
allow high velocities during the task execution. The robot colors become darker with
the evolution of the movement. (b) Close-up plots of the manipulabilities represented
in (a). (¢) Comparison of our manipulability tracking controller (in purple) with the
compatibility index maximization (in light blue).

the compatibility cost as a weighted sum, allowing the maximization or minimization
of the ellipsoid along several directions. This method provides more flexibility on the
resulting ellipsoid due to the weighted combination, at the cost of a laborious tuning.
Moreover, the orientation and elongation of the main axes of the ellipsoid after the
optimization are hard to infer from the cost weights.

In contrast to the considered manipulability-based optimization methods, the proposed
geometry-aware controllers seeks to fit the full desired manipulability ellipsoid in all its
directions. Singular configurations can therefore be easily avoided by defining appropriate
desired manipulability ellipsoids. Moreover, our manipulability controller allows the
tracking of any manipulability ellipsoid, including those providing a compromise between
dexterity in motion and force exertion along any axis. This is not possible when using
the compatibility index approach as it always favors the dexterity in motion over force
or vice-versa. This is not possible when using the compatibility index approach of [Chiu,
1987] as it always favors the dexterity in motion over force or vice-versa. Although
this compromise might be achievable using the compatibility index approach of [Chiu,
1988], our method does not require a laborious tuning process. Manipulability tracking is
also hard to achieve through manipulability volume maximization as there is no explicit
control on the resulting ellipsoid main axes.
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Figure 5.11 — Cartesian velocities achieved with our manipulability tracking controller
(purple) and the volume maximization approach (yellow) as secondary objective for a
Cartesian velocity controller. The gain of the velocity controller are equal for both
approaches. The desired velocities are shown in green.

5.4 Experiments

In this section, we extensively evaluate the proposed tracking formulation with different
robotic platforms and different types of manipulability ellipsoids in simulation. The
approach is evaluated to track a desired force manipulability in a pushing and an insertion
task with a Baxter robot, to track a desired manipulability for grasping with an Allegro
hand and to track a desired center of mass manipulability with NAO and Centauro
robots.

5.4.1 Manipulability Tracking for a Robotic Arm

The performance of the proposed manipulability tracking framework was first tested
in a pushing task and a peg-in-hole task (plugging an electric cable into a power
socket), achieved by the 7-DoF arm of the Baxter robot. In the first experiment,
the robot is required to track a desired manipulability ellipsoid aligned with a force that
is perpendicularly applied to a wall, while the robot end-effector can freely move on
the wall plane (see Figure 5.12). This task aims at emulating how humans vary their
body posture when applying a force with known direction but unknown amplitude to
successfully push an object. In this case, the robot controller is defined as (5.8), where
the desired robot position & only considers the constraint of being on the wall plane,
while M, corresponds to a force manipulability whose main axis is orthogonal to the wall
and kept constant over the course of the task.

Figure 5.12 shows the resulting manipulability using the redundancy resolution con-
troller (5.8). As expected, the robot modified its joint configuration in order to match,
as accurately as possible, the desired force manipulability, therefore adopting a posture
compatible with the force requirements of the pushing task. Note that the matching
can in this experiment only be achieved partially, because the robot is also required
to keep a position constraint at the level of its end-effector, and therefore the joints
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configuration to match the desired manipulability is restricted to avoid interference with
the primary objective. In order to verify that the robot found an appropriate pose to
match the desired manipulability while fulfilling the position constraint, we replaced the
manipulability tracking term in (5.8) by joint velocity commands driven by Brownian
noise. This test, carried out in simulation for ten minutes, allowed us to explore the space
of possible poses satisfying the primary objective, for which corresponding manipulability
ellipsoids were computed. The minimum distance between the computed and desired
manipulability ellipsoids obtained in this test coincided with the distance achieved by
our controller.

In the peg-in-hole scenario, the robot first needs to track a specific Cartesian trajectory
to approach a hole and subsequently insert a peg into it, as shown in Figure 5.13. Desired
manipulability ellipsoids were defined according to the task requirements for the two
different parts of the peg-in-hole process. Initially, a desired velocity manipulability
is aligned with the direction of motion of the end-effector governed by the reference
trajectory. Then, a desired force manipulability is set to be aligned with the force applied
to insert the peg, which is executed at the end of the task. Note that both alignments
refer to the major axis of the ellipsoids. Similarly as the pushing task, the robot used
the redundancy resolution controller (5.8), where & was defined as the desired Cartesian
trajectory to track, while NI, was set based on the aforementioned velocity and force
manipulability ellipsoids required by the task.

In order to show the effects of the manipulability tracking controller on the robot posture
over the course of the task, we also executed the peg-in-hole experiment with Kj; = 0,
which means that the manipulability tracking was fully disabled. A small difference
between the robot postures can be observed during the approaching part, which shows how
the manipulability controller influences the trajectory tracking phase (see Figure 5.13a).
More notably, the robot significantly varied its posture when the insertion part took
place, so that its manipulability coincided as accurately as possible with the desired
force manipulability ellipsoid (see Figures 5.13b, 5.13¢). This variation of the joint
configuration consequently allows the robot to adopt a posture compatible with the
control force required along the vertical direction of the task.

5.4.2 Manipulability Tracking for a Robotic Hand

In the context of robotic hands, manipulability ellipsoids have been used to analyze their
performances in grasping tasks [Prattichizzo et al., 2012]. In this experiment, we aim
at modifying the posture of a robotic hand to match a desired manipulability ellipsoid
while grasping an object. For the case of multiple arm systems, the set of joint velocities
of constant unit norm ||da|| = [|(47, .., d5)"

| =1 is mapped to the Cartesian velocity
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(a) Initial and final poses (b) Manipulability evolution

Figure 5.12 — Manipulability tracking for a pushing task with the Baxter robot. (a) The
initial and final pose of the robot are respectively depicted by orange and purple dots on
the elbow and wrist bend joints. (b) The three first graphs show the initial, final and
desired manipulability ellipsoids respectively depicted in yellow, dark purple and green.
The bottom-right graph shows the evolution of the distance between the current and
desired manipulability ellipsoid over time (in seconds).

(a) Approaching phase (b) Preparation phase (¢) Insertion phase

Figure 5.13 — Manipulability tracking for an insertion task with the Baxter robot. The
poses of the robot obtained with and without manipulability tracking are respectively
depicted by yellow and blue dots on the elbow and wrist bend joints when the robot (a)
approaches the hole, (b) prepares to insert the peg, (¢) ends the insertion of the peg in
the hole.
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space &, = (&1,...,2%)" through
”an2 = ngtz = i;br(szTJaJaTGl)ilibaa (5.34)

with the Jacobian J, = diag(Jy,...,J¢), the grasp matrix G, = (Gq,...,G¢) and
C the number of arms. Therefore, the velocity manipulability ellipsoid of the C-arms
system is given by M% = GiTJ,JTG! [Chiacchio et al., 1991a]. Note that the system
is modeled under assumptions that the arms are holding a rigid object with a tight grasp.
Moreover, we assume C' independent kinematic chains for the arms.

In this first experiment, the Allegro hand was required to track a desired manipulability,
while maintaining relative positions between the different fingers. This experiment aims
at emulating how humans adapt their finger configuration to the task at hand while
grasping an object. In this experiment, the desired velocity manipulability ellipsoid was
designed by the experimenter to be a medium-size isotropic ellipsoid. The purpose of this
design is to provide the hand with the capability to perform a displacement of the object
while being resistant to external perturbations in all the directions. For example, in the
case where the hand is holding a pen, it is desirable that the pen can be moved with
dexterity, while the hand should resist to perturbations due to the pen-surface contacts.

The fingers were controlled according to a leader-follower strategy [Luh and Zheng, 1987].
Therefore the thumb joints were moved to track the desired manipulability ellipsoid
using the controller (5.7) and the other fingers were required to maintain constant
relative end-effector positions with respect to the thumb end-effector, while tracking the
manipulability as secondary objective with the redundancy controller (5.8). The center
of the object was considered as the central position between the four fingers of the hand
and the contact points were assumed to be at the finger tips.

Figures 5.14a and 5.14b show an example of adaptation of the posture of the hand to track
a desired velocity manipulability ellipsoid for a grasp defined by the user. As expected,
the robot modified its joint configuration in order to match, as accurately as possible,
the desired velocity manipulability (see Figure 5.14c). Note that the manipulability
tracking in this experiment can only be achieved partially, because the robotic hand is
also required to maintain the initial grasp. Nevertheless, this tracking may be further
improved if the dimensionality of the nullspace of the main task is higher (e.g. not all
the finger tips are position-constrained), or using a higher DoF robotic hand.

5.4.3 Manipulability Tracking for a Humanoid Center of Mass

An interesting use of manipulability ellipsoids arises when these are defined at the
center of mass (CoM) of humanoid robots, which permits to analyze their capabilities to
accelerate the CoM in locomotion [Azad et al., 2017; Gu et al., 2015], or to evaluate
how resistant they can be to external perturbations using the force manipulability at
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Figure 5.14 — Manipulability tracking for grasping tasks with the Allegro hand in
simulation. (a) and (b) show the initial and final pose of the robot, respectively. (¢) The
initial, final and desired manipulability ellipsoids are depicted in yellow, dark purple and
green, respectively. The bottom-right graph shows the evolution of the distance between
the current and desired manipulability ellipsoid over time (in seconds).

a specific humanoid posture. With the goal of getting some insights on the role of
CoM manipulability ellipsoids in legged robots, we designed manipulability tracking
experiments using two different floating-base robots in simulation, namely, the humanoid
NAO and the Centauro robot [Baccelliere et al., 2017].

Specifically, we required the robots to track a desired manipulability ellipsoid defined at
its CoM while keeping balance. We assumed a strict hierarchy of tasks that gave the
highest priority to the task of maintaining the CoM position over the support polygon and
zero velocity at all contact points with the floor, while the manipulability tracking was
considered a secondary task. Under the aforementioned assumptions, we implemented
the inverse kinematics-based controller for floating-base robots proposed in [Mistry et al.,
2008], which we briefly introduce here. First, let us define the Jacobian for the primary
task as

Jy = l Jteet ] , (5.35)

J CoM,xy

where Jeet represents the Jacobians for the position/orientation of the robot feet while
JcoM xy is the Jacobian for the projection of the CoM onto the (x,y) plane (assuming
the gravity vector is in the z direction). Next, we define the vector of primary desired
velocities x; (i.e. velocities of the robot feet and CoM), noting that all the robot feet
velocities must equal zero in order to maintain constraints, therefore

gz;,,:[ 0 ] (5.36)

iCOM
where &con is the velocity at the robot CoM so that it lies in the support polygon.
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Figure 5.15 — Tracking of the COM manipulability with the Centauro robot in simulation.
(a) and (b) show the initial and final pose of the robot, respectively. (¢) The initial,
final and desired manipulability ellipsoids are depicted in yellow, dark purple and green,
respectively. The bottom-right graph shows the evolution of the distance between the
current and desired manipulability ellipsoid over time, given in seconds.

Regarding the secondary task, that is, the manipulability tracking at the robot CoM,
we first compute the Jacobian at the CoM Jco\ for floating-base robots as in [Mistry
et al., 2008], which allows us to calculate manipulability ellipsoids of the types introduced
in Section 5.2. Depending on which type of manipulability we require the robot to
track, we can use any of the manipulability Jacobians (5.3), (5.4) or (5.5) to compute
the desired joint velocities ¢ for the manipulability tracking task using (5.7). So, the
full joint velocity controller for legged robots required to keep balance while tracking a
desired manipulability ellipsoid at their CoM is defined as

.
. I, . R
1= l%in] (ng” + Ny (T {5)) " K mavee (LOth(Mt)>> , (5.37)

where the first term is included in order to account for the virtual joints of legged robots,
n is the number of DoF of the robot, and N} is the nullspace of the Jacobian (5.35).

We ran several experiments for testing the manipulability tracking at the CoM of the
Centauro (Figure 5.15) and NAO (Figure 5.16) robots using the controller (5.37). The
tests consisted of manually setting a desired manipulability ellipsoid to be tracked at the
CoM of the robot, and running a joint velocity controller given the reference provided
by (5.37). Notably, both Centauro and NAO tracked the desired manipulability as
precisely as possible without compromising the balancing task. Figures 5.15¢ and 5.16¢
show the distance between the desired and current CoM manipulability, which decreases
over time as the robot adapts its posture to carry out a good tracking while keeping its
balance. An interesting aspect about defining and tracking CoM manipulability ellipsoids
is the final posture that the robots achieve. Figure 5.15b shows the final posture achieved
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Figure 5.16 — Tracking of the COM manipulability with NAO in simulation. (a) and (b)
show the initial and final pose of NAQO, respectively. The CoM of the robot is depicted by
a red sphere. (¢) The initial, final and desired manipulability ellipsoids are depicted in
yellow, dark purple and green, respectively. The bottom-right graph shows the distance
between the current and desired manipulability over time (given in seconds).

by Centauro when tracking a CoM manipulability whose projection on the (x1,z2) plane
is a tilted ellipse, which makes the robot adopt a posture where the front legs and torso
rotate on the same plane (which corresponds to the floor in the virtual environment).
The final posture of NAO displayed in Figure 5.16b shows that both arms are completely
extended along the humanoid frontal axis, in an attempt to align them with one of the
main axis of the CoM manipulability ellipsoid. However, both the balancing task and
the lower number of DoF constrain NAO to closely match the desired manipulability.

5.5 Conclusion

This chapter presented a novel approach to track robot manipulability ellipsoids. Our work
extends the classical inverse kinematics problem to manipulability ellipsoids, by establish-
ing a mapping between a change of manipulability ellipsoid and the robot joint velocity.
We exploited tensor representation and Riemannian manifolds to build geometry-aware
manipulability tracking controllers and showed the importance of geometry-awareness
for manipulability tracking.

Our tracking formulation enables robots to modify their posture in an exponentially stable
way so that desired manipulability ellipsoids are tracked, either as a main control task
or as a redundancy resolution problem where the manipulability tracking is considered
a secondary objective. Compared to state-of-the-art manipulability-based optimization
schemes, our tracking formulation allows the reproduction of any manipulability ellipsoid
beyond the maximization of manipulability parameters. The proposed tracking approach
covers different manipulability ellipsoids proposed in the literature, such as velocity, force
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and dynamic manipulability ellipsoids [Doty et al., 1995]. A relevant aspect about our
approach is its generic structure, which means that we can track manipulability ellipsoids
for a large variety of robots, as reported in the previous section, where a robotic arm, a
robotic hand, a Centauro robot and a humanoid were used to test our tracking approach.
This shows that our approach can be used in a large variety of contexts and that many
further applications can be considered.

We also showed that our manipulability tracking framework is compatible with statisti-
cal methods providing 4th-order covariances, allowing us to exploit task variations to
characterize the precision of the manipulability tracking problem, with stronger tracking
along low variability directions. Therefore, our manipulability tracking framework may
be readily combined with the manipulability learning framework presented in Chapter 4.
A complete manipulability transfer framework will be introduced in the next chapter,
where a human or robot teacher demonstrates how to perform a task with a desired time-
varying manipulability profile, while a student robot reproduces the task by exploiting
its own redundant kinematic structure so that its manipulability ellipsoid matches the

demonstration.
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A Human-to-robot

Manipulability Transfer
Framework

In the Part I of this thesis, we introduced a manipulability learn-
ing framework, allowing the encoding and retrieval of sequences of

manipulability ellipsoids from demonstrations. In order to be able

to reproduce a learned manipulability profile, the previous chapter H ¢\\ x5

proposed to endow robots with adapted geometry-aware controllers. Lr

In this chapter, we propose to combine the aforementioned manipulability learning and tracking
approaches into a complete geometry-aware manipulability transfer framework, allowing robots
to learn and reproduce manipulability ellipsoids from expert demonstrations.

/Publication note \

The material presented in this chapter is adapted from the following publications:

e Jaquier, N., Rozo, L., Caldwell, D. G., and Calinon, S. (2020b). Geometry-aware
manipulability learning, tracking and transfer. Intl. Journal of Robotics Research;

e Jaquier, N., Rozo, L., and Calinon, S. (2020c). Analysis and transfer of human
movement manipulability in industry-like activities. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

Supplementary material
Videos related to this chapter are available at:
https://sites.google.com/view/manipulability.

Source code
Source codes related to this chapter are available at:

\ https://github.com/NoemieJaquier/Manipulability. /
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Chapter 6. A Human-to-robot Manipulability Transfer Framework

6.1 Introduction

In the two previous chapters, we presented a manipulability learning and a manipulability
tracking frameworks. In Chapter 4, the learning approach provided a sequence of desired
manipulability ellipsoids learned from demonstrations. After the learning phase, the goal
of a learner robot is to reproduce the given profile of desired manipulability ellipsoids.
However, existing approaches built on manipulability-based optimizations are not suitable
as they do not allow the tracking of specific manipulability ellipsoids. The tracking
framework presented in Chapter 5 used manually-specified robot manipulability ellipsoids
for the task. However, this may be tedious and cumbersome when the robot needs to
carry out different and complex tasks. In this chapter, we show that integrating the
proposed learning and tracking approaches solves the aforementioned problems and offers
a complete geometry-aware manipulability transfer framework where manipulability
ellipsoid profiles are learned from demonstrations and reproduced accurately.

To do so, we introduce the novel idea that manipulability-based posture variation for task
compatibility can be addressed from a robot learning from demonstration perspective.
Specifically, we cast this problem as a manipulability transfer between a teacher and a
learner. The former demonstrates how to perform a task with a desired time-varying
manipulability profile, while the latter reproduces the task by exploiting its own redundant
kinematic structure so that its manipulability ellipsoid matches the demonstration. Unlike
classical learning frameworks that encode reference position, velocity and force trajectories,
our approach offers the possibility of transferring posture-dependent task requirements
such as preferred directions for motion and force exertion in operational space, which are
encapsulated in the demonstrated manipulability ellipsoids.

This idea opens two main challenges, namely, (i) how to encode and retrieve a sequence
of manipulability ellipsoids, and (77) how to track a desired time-varying manipulability
either as the main task of the robot or as a secondary objective. The former problem is
addressed by the learning framework proposed in Chapter 4, while the latter is solved
through the manipulability tracking formulation introduced in Chapter 5.

The proposed approach can be straightforwardly applied to different types of kineto-static
and dynamic manipulability measures. This opens the door to manipulability transfer
scenarios with various types of robots where different task requirements at kinematic
and dynamic levels can be learned and successfully transfered between agents of different
embodiments. In particular, this framework also permits to transfer other velocity, force
or impedance specifications with any priority order with respect to the manipulability
tracking controller. After describing the proposed manipulability transfer framework
(see Section 6.2), the functionality of the proposed approach is evaluated in different
manipulability transfer scenarios involving a simulated legged robot and two dual-arm
robots (see Section 6.3). We first show that the task-dependent patterns observed by
analyzing single- and dual-arm manipulability in human movements during screwing
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Figure 6.1 — Overview of the proposed manipulability transfer framework

and carrying tasks in Chapter 4 can be transferred to robots executing similar tasks,
bypassing the complexity of kinematic mapping approaches. Then, the manipulability
transfer is showcased in a bimanual setup where an unplugging task is kinesthetically
demonstrated to a 14-DoF dual-arm robot, which then transfers the learned model to a
different dual-arm system that reproduces the unplugging task successfully.

6.2 Manipulability Transfer

An overview of the proposed manipulability transfer framework is presented by Figure 6.1.
In the first step, trajectories demonstrated by a human or robot teacher are collected,
including the manipulability profile corresponding to the task. Note that the trajectories
can jointly encode various variables, e.g., time, position, velocity, force measurements. In
the learning phase, a Gaussian mixture model (GMM) is built on the SPD manifold to
encode the trajectories and a sequence of desired manipulability ellipsoids is retrieved
using Gaussian mixture regression (GMR) on the SPD manifold. The learning approach
was detailed in Chapters 3 and 4 of this thesis. In the reproduction phase, a student
robot tracks the given desired manipulability profile by using one of the controllers of the
manipulability tracking framework detailed in Chapter 5. Note that these controllers can
straightforwardly be combined with classical control approaches, e.g., position, velocity,
force or impedance controllers.
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6.3 Experiments

6.3.1 Human-to-robot Manipulability Transfer

In Chapter 4, we presented a detailed analysis of single and dual-arm manipulability
ellipsoids for human movements during industry-like activities. Here, we illustrate how
this manipulability analysis can be exploited to transfer manipulability-based posture
variation from humans to robots executing similar tasks without the need of complex
kinematic mappings. Namely, we propose to transfer the manipulability requirements of
screwing and carrying tasks (SM and C5) from a human to a Centauro robot [Baccelliere
et al., 2017]. To do so, we exploit the proposed manipulability transfer framework
for the Centauro robot to learn and reproduce manipulability ellipsoids from human
demonstrations. For both tasks, the demonstrations consist of the 15 recorded trials of the
participant 541 of the dataset [Maurice et al., 2019] previously used for the manipulability
analysis in Chapter 4. A subset of actions is considered for each task. The simulated
experiments were performed using Pyrobolearn [Delhaisse et al., 2019].

In Chapter 4, we showed that a manipulability ellipsoid profile of the transition actions,
such as the carrying action Ca for the screwing task, can be seen as part of a planning
process for the next action of interest (i.e. screwing Sc). We exploit this idea for the
manipulability transfer of the screwing task. We propose to learn and reproduce the
manipulability profile of the actions preceding Sc, namely carrying (Ca), placing (PI) and
fine manipulation (Fm), aiming at reaching an appropriate posture to efficiently execute
the main task. To do so, a desired time-driven manipulability profile NI, is first learned
from the demonstrations with a Gaussian mixture model (GMM) on the SPD manifold.
The robot is then required to track the desired manipulability profile while keeping
balance and positioning its end-effector at a specific location, whose height is equal to the
one of the SM motion. We assume a task hierarchy that prioritizes the position control
of the center of mass (CoM) over the support polygon and zero velocity at all contact
points with the floor, while both the end-effector position and manipulability tracking
are considered secondary tasks. The corresponding full joint velocity controller for legged
robots is defined similarly as (5.37) (see [Mistry et al., 2008] for details), i.e.,

T
g = |:(€n><n] (Jgib + NbdNb) ; (6.1)
6xXn
where the first term accounts for the virtual joints of a floating-base robot, n is the
number of DoF of the robot, &, and J, are defined in (5.36) and (5.35), N} is the
corresponding nullspace projection matrix and ¢, is the joint velocities of the secondary
tasks. In the first part of the motion, corresponding to the carrying action Ca, the
manipulability tracking is prioritized over the position tracking in order to allow the
robot to reach a good initial posture for executing the task. Therefore, we defined the
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joint velocities of the secondary task as

= (T Jy)T K mvee (Logag (VD) + (1= (7],)TTT,) S Ko 2 - @), (62

main task nullspace op. secondary task

where the position tracking controller is projected onto the nullspace of the manipulability
controller, see also 5.25. Then, for the remaining part of the motion, the position tracking
is prioritized so that the robot can reach the screwing location with a posture adapted
to the task requirements. Thus, the corresponding joint velocities are given by

dn, = JT K, (& —2)+ (I — JWT) (T ly)T Karmvec (LogM(M)), (6.3)

main task nullspace op. secondary task

based on the manipulability-based resolution controller (5.8).

Figure 6.2a displays the demonstrations along with the centers of the components of the
geometry-aware GMM encoding M. The number of components of the model (C = 3)
was selected by the experimenter. Figures 6.2b and 6.3 show the evolution of the posture
and the manipulability of Centauro during the reproduction of the pre-screwing motion
with its right arm. The manipulability tracking has priority over the position control
by (6.2) from ¢t = 0 to ¢ = 1s, and the priority order is reversed for the remaining time
using (6.3). Therefore, during the first part of the motion, we can observe that the
robot mainly adapts its posture to fulfill the manipulability requirements. This naturally
results in the robot orienting its end-effector outwards w.r.t its torso. In this phase, the
position error slightly increases, while the manipulability error decreases (see Figure 6.2c).
The robot starts the second part of the task by moving its right arm to decrease the
position error. Interestingly, despite the desired position could be reached solely by
extending the arm, the robot instead uses its torso to rotate the arm in order to reach the
desired end-effector position while still tracking the desired manipulability accurately (see
Figure 6.3c). Note that tracking the desired manipulability for this task naturally favors
arm postures where the end-effector is oriented outwards, matching a screwing motion
whose main direction is orthogonal to a vertical plane in the robot workspace. This
corresponds to the recorded screwing motion of the participant 541. However, considering
a precise orientation remains necessary for successfully executing a complete screwing
task, which can be straightforwardly included in our control formulation. Finally, notice
that we manually encoded the transition between the controllers (6.2) and (6.3) in this
experiment. A data-driven automatic prioritization of the manipulability and position
requirements may also be implemented following the approach presented in [Silvério
et al., 2019].

For the transfer of the C5 task, we consider the part of the motion where the human picks
up the load to carry it, i.e. Pi and Ca actions. After having learned the desired dual-arm
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Figure 6.2 — Partial reproduction of a screwing task using human-robot manipulability
transfer. (a) shows the demonstrated manipulability profile (in gray) and the centers of the
3-states GMM on the SPD manifold (in purple) over time. (b) shows the 2D projections
of the time-varying desired manipulability profile, learned by demonstrations, and the
reproduced manipulability depicted by blue and dark purple ellipsoids, respectively. (c)
depicts the distance between the current and desired manipulability (and end-effector
position) over time (given in seconds). The change of controller during the pre-screwing
motion is indicated by a vertical line.
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t=3.5

68

(a) Initial posture (b) Switch of tracking priority (c) Final posture

Figure 6.3 — Snapshots of the robot executing a partial reproduction of a screwing task
using human-robot manipulability transfer. The snapshots correspond to (a) the initial
posture, (b) the posture when the tracking priority switches and (¢) the final posture of
the robot. The desired and reproduced manipulability are depicted by blue and purple
ellipsoids, respectively. The desired end-effector position is depicted by a red dot. The
time is given in seconds.

manipulability profile from demonstrations, we employ the main controller (6.1) with the
nullspace controller (6.3) for the whole task while keeping the end-effectors position fixed.
Note that we consider all the DoFs of the robot for computing the dual-arm manipulability
ellipsoid M¥ = (GLTJdeTGIl)il (4.3), so that the dual-arm Jacobian is defined as

Jy = (JlT ,J1)T. Figure 6.4a displays the demonstrations along with the centers of the
components of the geometry-aware GMM encoding M (f ;- The number of components
of the model (C' = 4) was selected by the experimenter. Figures 6.3 and 6.4b show the
evolution of the posture and the manipulability of Centauro during the reproduction
of the dual-arm carrying motion. We observe that the robot adapts the posture of its
arms to fulfill the manipulability requirements of the task. However, constraining the
end-effectors to fixed positions significantly reduces the DoF redundancy that the robot
can exploit to track accurately the desired manipulability (see also Figure 6.4c). This
issue may be alleviated by allowing the robot to vary the positions of its end-effector

while maintaining a constant distance between them after picking up the load.

6.3.2 Manipulability Transfer Between Robots for a Bimanual Task

The performance of the proposed manipulability transfer framework was also tested in
a bimanual unplugging of an electric cable from a power socket. The central idea is
to teach different dual-arm robots to execute a task requiring a specific manipulability
profile via kinesthetic teaching provided only to one of the bimanual robots.

In the first part of the experiment, the two 7-DoF arms of a Baxter robot are kinesthetically
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Figure 6.4 — Partial reproduction of a carrying task using human-robot manipulability
transfer. (a) shows the demonstrated manipulability profile (in gray) and the centers of the
4-states GMM on the SPD manifold (in purple) over time. (b) shows the 2D projections
of the time-varying desired manipulability profile, learned by demonstrations, and the
reproduced manipulability depicted by green and dark purple ellipsoids, respectively. (c)
depicts the distance between the current and desired manipulability (and end-effector
position) over time (given in seconds).
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Figure 6.5 — Snapshots of the robot executing a partial reproduction of a carrying task
using human-robot manipulability transfer. The snapshots correspond to the initial,
intermediate and final postures of the robot. The desired and reproduced manipulability
are depicted by green and purple ellipsoids, respectively. The time is given in seconds.

guided to provide demonstrations (see Figure 6.6a). The posture of the arms is modified
by the user so that the main axis of the dual force manipulability ellipsoid of the system
MF = (GIITJdJ il GL)*1 is aligned with the direction of extraction. Then, the arms are
moved in opposite directions to unplug the electric cable from the socket. We extracted
both the relative position Ax; between the end-effectors of both arms and the force
manipulability ellipsoid of the system M f ;- The collected data were time-aligned and
split in two datasets of time-driven trajectories, namely relative Cartesian positions and
manipulability. We trained a classical GMM over the time-driven relative positions and
a geometry-aware GMM over the time-driven manipulability ellipsoids. The number of
components of each model (C = 4) was selected by the experimenter.

In the second part of the experiment, the unplugging task is reproduced by both the
Baxter robot and a pair of Franka Emika Panda robots (see Figures 6.6b, 6.6¢). For
both reproductions, the relative position between the end-effectors and the desired
manipulability of the system were computed at each time step by a classical GMR as
Az, ~ p(Az|t) and a geometry-aware GMR as Mft ~ P(MYF|t). In both cases, the left
robotic arm was required to move its joints to track the desired manipulability ellipsoid
(5.7), while the right arm was required to maintain the desired relative Cartesian position
with respect to the left arm, while tracking the desired manipulability as secondary
objective (5.8). Note that the actuation contribution of each robot was taken into account
to compute the manipulability ellipsoids through the whole experiment.

Figure 6.7 displays the two demonstrations recorded by kinesthetically guiding the Baxter
robot along with the components of the GMM encoding Ax; and the centers of the
components of the geometry-aware GMM encoding M, f . The first and third dimensions
of Ax; are not represented as they do not vary significantly during the experiment.
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(¢) Reproduction by the two Franka Emika Panda robots

Figure 6.6 — Snapshots of the bimanial unplugging task. The robots pose at the beginning
of the task, before and after the extraction of the cable from the socket are respectively
shown in the left, middle and right column.
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Figure 6.7 — Demonstrations and GMM encoding the bimanual unplugging task. (a)
Demonstrated relative end-effectors position for the Baxter robot (in gray) and com-
ponents of the 4-states GMM (in blue). Only the most representative dimension is
displayed. The distance between the two arms increases when the cable is unplugged
from the socket. (b) Demonstrated force manipulability profile (in gray) and centers of
the 4-states GMM in the SPD manifold over time (in purple). The position x and time ¢
are given in meters and seconds, respectively.

Figure 6.8 shows the relative Cartesian position and manipulability ellipsoid profile to be
tracked and the reproduction results when the Baxter robot executed the task. Baxter
successfully tracked the desired manipulability ellipsoid while maintaining the required
relative distance between its end-effectors.

Figure 6.9 shows the relative Cartesian position between the arms and the manipulability
ellipsoid profile obtained during the reproduction of the task by the two Panda robots.
These successfully achieved the required task and tracked the desired manipulability
ellipsoid profile obtained from model trained with the data recorded on the Baxter robot.
Note the manipulability matching is not exact in this case due to the differences between
Baxter and the Panda robots. Indeed, even if the actuation capabilities of each robot are
taken into account in our manipulability transfer framework, the capabilities of the two
dual-arm system differ due to other physical specificities, e.g. the relative position of the
bases of the arms.
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Figure 6.8 — Reproduction of the bimanual unplugging task with Baxter. The desired and
reproduced trajectories are represented in green and dark blue respectively. (a) shows

the desired and reproduced relative position between the end-effectors along the second
dimension. (b) shows the desired and reproduced (overlapping) manipulability ellipsoids.
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Figure 6.9 — Reproduction of the bimanual unplugging task with the two Panda robots.
The desired and reproduced trajectories are represented in green and purple respectively.
(a) shows the desired and reproduced relative position between the end-effectors along
the second dimension. (b) shows the desired and reproduced manipulability ellipsoids.
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6.4 Discussion

The manipulability transfer results reported in Section 6.3 showed the effectiveness of the
proposed approach for transferring manipulability ellipsoids from humans to robots or
between robots that differ in their kinematic structure, which has remained a challenge in
the robot learning community. Our learning framework allows a robot to learn posture-
dependent task requirements without explicitly encoding a model in the joint space of the
demonstrator, which would require complex kinematic mapping algorithms and would
make task analysis less interpretable at first sight. In addition, the proposed framework
extends the robot learning capabilities beyond the transfer of position trajectories, force
profiles and impedance parameters.

It is important to emphasize the fact that the manipulability tracking precision strongly
depends on the kinematic redundancy (i.e., number of DoFs of the robot) when the task
is considered a secondary objective, as the higher it is, the more capable the robot is to
perform more than one task simultaneously. Note that, in the case of legged robots (which
are often characterized by a high number of DoFs), the manipulability tracking may still
be slightly compromised because of the set of constraints imposed by the balancing task,
as observed in Sections 5.4.3 and 6.3.1. However, if these robots are provided with the
possibility of modifying their feet position while keeping balance, then the manipulability
tracking may be further improved. This clearly requires more sophisticated balancing
controllers, but gives robots more freedom to adapt their posture and achieve better
manipulability tracking. Notice that in the case of robotic hands, a similar behavior
arises when the finger tips are constrained according to some grasping requirements,
which might affect the manipulability tracking when projected into the nullspace of
the primary task. Finally, a better manipulability tracking can be achieved when the
corresponding controller is given a high or the highest priority. This may be viewed
as part of a planning process, as shown in the human-to-robot manipulability transfer
experiments.

It is important to notice that the proposed manipulability tracking approach is a local
method in the sense that the solution depends on the current configuration of the robot
which is a function of the Jacobian. This makes the tracking convergence dependent on the
current configuration of the robot, which sometimes may limit the tracking performance.
However, the robot may achieve a better tracking if it is allowed to look for other initial
postures. As an example, the robot may not track precisely the desired manipulability
ellipsoids for a given initial posture, due for instance to its joint limits. However, if the
robot slightly modifies its initial posture, it may find a better starting configuration to
subsequently minimize the error between the desired and current manipulability ellipsoids
in a larger proportion, even if the new initial posture initially increases this error.

As stated previously, the affine-invariant metric set matrices with null eigenvalues at an
infinite distance of any SPD matrix. Consequently, special care must be taken when
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the robot is at a singular configuration as the corresponding manipulability ellipsoid
significantly shrinks along the dimensions with null eigenvalues. To overcome this
problem, [Yun, 2020] proposed to use a distance metric on the Riemannian manifold of
positive semi-definite (PSD) matrices of rank 1, as defined in [Bonnabel and Sepulchre,
2010], to match a desired major axis of the manipulability ellipsoid. However, it is not clear
how this approach would be extended to track of a full desired manipulability ellipsoid
when the robot moves away from the singularity. In practice, singular configurations
can be easily avoided by defining appropriate desired manipulability ellipsoids, whose
eigenvalues are far enough from zero. Another alternative would be to use the Bures
metric [Bures, 1969], which is a distance on the space of SPD matrices that is robust to
singular matrices.

Overall, the proposed manipulability transfer framework may be exploited in a large
variety of applications, where the posture of the robot may have an impact on its
performance while executing the task. In addition to varying the robot posture for
task compatibility, tracking a desired manipulability profile as a secondary task may
typically complement a main control task to avoid singularity, handle perturbations during
task execution, optimize the execution time or minimize the energy consumption [Kim
et al., 2010]. In particular, manipulability transfer may be utilized from a motion
planning point of view. To do so, the robot may first track a desired manipulability
as main control task in a planning phase, where the robot adapts its posture in order
to anticipate the next action. Following this planning phase, the robot executes the
desired action with a posture adapted to the task requirements. In this phase, the desired
manipulability is tracked as a secondary task. In a related context, the manipulability
learning and tracking frameworks may be exploited to plan or adapt the configuration of
the robot in anticipation of potential collisions or to minimize the potentially damaging
impact forces if the collision cannot be avoided. To do so, a profile of dynamic impact
manipulability ellipsoids, which is dually related to the dynamic manipulability [Walker,
1994], may be learned in function of the potential collisions and tracked as a secondary
task. Moreover, in the context of rehabilitation and assistance, the proposed learning and
tracking formulations may be exploited in control strategies for exoskeletons. In [Petri¢
et al., 2019], the exoskeleton posture is optimized to achieve an isotropic manipulability
by sensing the human muscular manipulability. In this setting, a varying exoskeleton
manipulability profile may be retrieved using GMR as a function of the sensed muscular
manipulability.

From a mathematical point of view, it is worth highlighting the importance of considering
the structure of the data we work with. While alternative solutions to handle SPD
matrices are present in literature (e.g. those using Cholesky decomposition), we showed
that Euclidean manipulability-tracking controllers lead to unstable behaviors in contrast
to the stable behavior displayed by our geometry-aware controller (see Section 5.3).
Equally important, the manipulability ellipsoids profiles retrieved by the geometry-aware
and Euclidean GMR were similar only around the mean of the GMM components, but
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diverged when moving away from it. This is because the estimated output in Euclidean
space is only a valid approximation for input data lying close to the mean, as reported in
Section 3.5. Therefore, geometry-awareness is crucial for successful learning and tracking
of manipulability ellipsoids in the proposed manipulability transfer framework.

6.5 Conclusion

This chapter presented a novel framework for transferring manipulability ellipsoids to
robots. The proposed approach is built on a probabilistic learning model that allows the
encoding and retrieval of manipulability ellipsoids, and on the extension of the classical
inverse kinematics problem to manipulability ellipsoids, by establishing a mapping
between a change of manipulability ellipsoid and the robot joint velocity. We exploited
tensor representation and Riemannian manifolds to build a geometry-aware learning
framework and exponentially-stable tracking controllers and showed the importance of
geometry-awareness for manipulability transfer. This approach enables the learning
of posture-dependent task requirements and provides a skill transfer strategy going
beyond the imitation of trajectory, forces or impedance behaviors. Furthermore, it
allows manipulability transfer between agents of different embodiments, while taking into
account their individual characteristics, and is adapted to complex scenarios involving
any manipulability ellipsoid shape and various types of robots.

An open problem concerns the adaptation of the desired manipulability ellipsoid to
exploit the capabilities of the learner in situations in which this learner can reach a better
manipulability than the teacher for the task at hand. The next chapter makes a step
towards solving this problem, by proposing a geometry-aware Bayesian optimization
framework that seek optimal parameters lying on Riemannian manifolds.
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] GaBO: Geometry-aware
Bayesian Optimization

The Parts I and II of this thesis presented geometry-aware methods to
learn symmetric positive definite (SPD) matrices from demonstration
and to control robots to track the learned SPD sequences. After
learning a skill from demonstrations, it is often desirable that the robot
is able to refine or adapt this skill to a new situation. Therefore, the
Part III of this thesis focuses on this problem.

In this chapter, we consider Bayesian optimization (BO) — known as a data-efficient and
gradient-free approach — for direct policy search and propose a geometry-aware Bayesian
optimization (GaBO) framework. Our approach, built on Riemannian manifold theory, allows
BO to efficiently optimize non-Euclidean parameters.

(Publication note \

The material presented in this chapter is adapted from the following publication:

e Jaquier, N., Rozo, L., Calinon, S., and Biirger, M. (2019b). Bayesian optimization
meets Riemannian manifolds in robot learning. In Conference on Robot Learning
(CoRL) (Best presentation award).

The corresponding presentation can be watched at:
https://youtu.be/b7StSnt85S47t=7763.

Supplementary material
A video illustrating the concepts presented in this chapter is available at:
https://sites.google.com/view/geometry-aware-bo.

Source code
Source codes related to this chapter are available at:
https://github.com/NoemieJaquier/GaBOtorch (pytorch-based code),
\ https://github.com/NoemieJaquier/GaBOflow (tensorflow-based code). /
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Chapter 7. GaBO: Geometry-aware Bayesian Optimization

7.1 Introduction

In the previous chapters, we designed learning and control methods adapted to data
lying on Riemannian manifolds. We showed the need and demonstrated the impact of
introducing information about the geometry of the data into the proposed learning and
control frameworks. In some cases, the skills learned by robots need to be refined or
adapted to a new situation. This may for example be the case if we want to transfer a
desired manipulability ellipsoid to a learner robot that may reach a better manipulability
than the one demonstrated by the teacher for the task at hand. In this chapter, we
propose to exploit the geometry of Riemannian manifolds to refine non-Euclidean robot
control parameters and optimize parametric policies in a data-efficient, gradient-free and
geometry-aware approach.

When robots learn new skills or adapt their behavior to unseen conditions, their learning
process needs to be safe, fast and data-efficient as the robot is a physical system
interacting with the environment, making every single interaction costly. In reinforcement
learning (RL) for robotics, Bayesian Optimization (BO) [Shahriari et al., 2016] has
gained increasing interest due to its success on optimizing parametric policies in several
challenging scenarios [Cully et al., 2015; Englert and Toussaint, 2016; Marco et al.,
2017; Rai et al., 2018]. Its popularity is due to its ability to model complex noisy cost
functions in a data-efficient manner, contrasting to data-hungry methods used in deep
RL [Arulkumaran et al., 2017]. However, BO performance degrades as the search space
dimensionality increases, opening the door to different approaches dealing with the
curse of dimensionality [Li et al., 2017; Rana et al., 2017b; Kirschner et al., 2019]. Its
performance also depends on the generalization capabilities of Gaussian process (GP)
models (the common surrogate model of BO), which is strongly impacted by the definition
of both the mean and kernel functions.

A recent approach to improve BO performance is via domain knowledge, commonly
introduced into the GP mean function [Cully et al., 2015] or through the design of task-
specific kernels [Antonova et al., 2017], as detailed in Section 7.2. Nevertheless, several
of these solutions are not task-agnostic, requiring new kernels as the task domain varies.
A more scalable approach is to provide domain knowledge that generalizes over several
tasks. Along this line, we propose to provide BO with information about the geometry of
the search space, a key feature often overlooked in BO applications. Geometry-awareness
is particularly relevant when the parameter space is not Euclidean, which is common in
robotic applications, where a variety of manifolds arise [Ratliff et al., 2018; Zeestraten,
2018]. For example, forces and torques belong to the Euclidean manifold R?, stiffness,
inertia and manipulability lie in the manifold of symmetric positive definite matrices
Sty
orientations, and the special Euclidean group SE(3) describes robot poses.

the special orthogonal group SO(3) or the unit-sphere S are used to represent

We hypothesize that bringing geometry-awareness into BO may improve its performance
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and scalability. To do so, we bring Riemannian manifold theory to Bayesian optimization
(see Section 7.3 for a short background). We first propose to use geometry-aware kernels
allowing GP to properly measure the similarity between parameters lying on a Riemannian
manifold. Second, we exploit Riemannian manifold tools to consider the geometry of
the search space when optimizing the acquisition function (see Section 7.4). These two
contributions lead to a fully geometry-aware BO framework (hereinafter called GaBO)
which naturally handles the constraints of parameters lying on smooth differentiable
manifolds. We test GaBO with different benchmark functions and, as a proof of concept,
in a set of simulated scenarios aimed at refining simple control policies for robotic
manipulation (see Section 7.5). Our results show that GaBO outperforms the classical
BO formulation in convergence, accuracy and scalability as the space dimensionality
increases.

7.2 Related Work

BO has been widely applied in diverse robotic applications, such as behavior adaptation
for damaged legged robots [Cully et al., 2015], controller tuning for balancing [Marco
et al., 2016], biped locomotion [Antonova et al., 2017; Rai et al., 2018], whole body
control [Yuan et al., 2019], physical human-robot interaction [Ghadirzadeh et al., 2016;
Kupcsik et al., 2015], and manipulation [Driefl et al., 2017]. A key aspect of the success
of BO is the use of domain knowledge, mainly introduced into the surrogate model or the
acquisition function. This prior information aims at decreasing the problem complexity
and improving the convergence and accuracy of BO. This section reviews how domain
knowledge has been exploited to improve BO performance.

Cully et al. [2015] used simulated walking behaviors as prior knowledge that allowed a
robot to quickly adapt to drastic hardware changes. Pautrat et al. [2018] extended this
idea and exploited the GP mean function to introduce prior knowledge about the robot
behavior, which was later used to learn new tasks using a pool of given priors. They also
proposed a new acquisition function that harmonized the expected improvement and the
prior model likelihood. Wilson et al. [2014] used trajectory data extracted during policy
execution to learn the initial state distribution, the transition and reward functions.
These were used to generate Monte-Carlo estimates of policy performance that were
used to define the GP mean function. The authors also introduced a Kullback-Leibler
divergence kernel that used trajectory information to measure the relatedness between
policies. In contrast to these works, we do not focus on imposing prior knowledge through
the GP mean function but instead exploit the geometry of the parameter space to drive
the BO exploration.

Marco et al. [2016] tuned the parameters of a pole-balancing robot controller using BO
with an acquisition function maximizing the information gain. The authors emphasized
that a GP with common kernels may degrade the learning outcome [Marco et al., 2017],

131



Chapter 7. GaBO: Geometry-aware Bayesian Optimization

and thus kernels leveraging the controller structure may be preferred. Thus, they proposed
two kernels exploiting the structure of linear quadratic regulators, which outperformed
the common squared-exponential (SE) kernel. The shortcomings of the SE kernels were
also analyzed by Martinez-Cantin [2017], who proposed a set of adaptive kernels designed
to model functions from nonstationary processes. This proved useful in direct policy
search where failures result in large discontinuities or flat regions while fast variations are
observed around the optimal policy. Rai et al. [2018] used a gait feature transformation
to generalize a range of locomotion controllers and robot morphologies. This transform
reparameterized the original space of controller parameters to a 1D space, where a
classical SE kernel was used. Note that such transformation can also be interpreted as
a metric function embedded into the SE kernel. In contrast to previous works which
introduced prior knowledge into the BO kernel by relying on domain experts, Antonova
et al. [2017] used a neural network to learn a kernel using simulated bipedal locomotion
patterns. This neural-network kernel could be learned from the BO cost directly or
from the trajectories in a cost-agnostic manner. Unlike these works, we do not design
task-specific kernels but instead exploit geometry-aware kernel functions that can be
used for different tasks whose search spaces share the same geometry.

Another way to introduce domain knowledge into BO is via the acquisition function. En-
glert and Toussaint [2016] and Drief8 et al. [2017] included domain knowledge into the
tuning of robot control parameters through an acquisition function using success informa-
tion embedded into a GP classifier, which was learned during task trials in the real robot.
Other works exploit domain knowledge to deal with the BO curse of dimensionality. Yuan
et al. [2019] proposed a search space partitioning method to tackle the high dimensionality
of a whole-body quadratic programming controller. The acquisition function was given
only a subset of independent physically-meaningful partitions of the parameter space.
Along this line, our work includes domain knowledge into the acquisition function by
exploiting geometry-aware optimization that handles parameters lying on Riemannian
manifolds.

The work by Oh et al. [2018] is one of the few in BO literature where geometry-awareness
is considered. The authors applied a cylindrical transformation to the search space to
overcome boundary issues when a sphere-like domain is given, and used a geometry-
aware kernel. Their method was more accurate, efficient and scalable when compared to
state-of-the art BO. However, Oh et al. [2018] did not include geometry information into
the optimization of the acquisition function. As mentioned previously, our approach is
fully geometry-aware as both the kernel function and the optimization of the acquisition
function consider the geometry of the search space.
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7.3 Background: Bayesian Optimization

Bayesian optimization (BO) is a sequential search algorithm aiming at finding a global
maximizer (or minimizer) of an unknown objective function f

x* = argmax f(x), (7.1)
reX
where X C RP* is some design space of interest, with Dy being the dimensionality
of the parameter space. The black-box function f has no simple closed form, but can
be observed point-wise by evaluating its value at any arbitrary query point « in the
domain. This evaluation produces noise-corrupted (stochastic) outputs y € R such that
Ely|f(x)] = f(x), with observation noise o.

In this setting, BO specifies a prior belief over the possible objective functions. Then, at
each iteration n, this model is refined according to observed data D,, = {(x;,y;)}-; via
Bayesian posterior update. An acquisition function , : X — R is constructed to guide
the search for the optimum. This function evaluates the utility of candidate points for
the next evaluation of f; therefore, the next query point @, is selected by maximizing
Y, 1€,

@1 = argmax v, (@; D). (7.2)
rxeX

After N queries, the algorithm makes a final recommendation «p, representing its best
estimate of the optimizer.

The prior and posterior of f are commonly modeled using a Gaussian Process GP(u, k)
with mean function p : X — R and positive-definite kernel (or covariance function)
k:X x X — R (see Chapter 2.4.2 for a background on GPs). Therefore, the function
f follows a Gaussian prior f(x) ~ N (u, K) as in (2.48). With & representing an
arbitrary test point, the random variable f(&) conditioned on observations is also
normally distributed (2.49) with posterior mean and variance functions denoted here as
pn (%) and o2 (&). The posterior mean and variance evaluated at any point & respectively
represent the model prediction and uncertainty of the objective function at €. In BO,
these functions are exploited to select the next query «,41 by means of the acquisition
function. The mean and kernel functions completely specify the GP and thus the model
of the function f. The most common choice for the mean function is a constant value,
while the kernel typically has the property that close points in the input space have
stronger correlation than distant points. One popular kernel is the squared-exponential
(SE) kernel (2.52)

k(zi, ;) = 0exp (—,6’ d(x;, iL‘j)2) )

where d(-,-) denotes the distance between two observations and the parameters 5 and 6
control the horizontal and vertical scale of the function. The kernel parameters and the
observation noise are usually inferred via maximum likelihood estimation (MLE).
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Algorithm 1: Geometry-aware Bayesian Optimization (GaBO)

Input: Initial set of observed data Dy = {(x;, y;)} %, with &; € X C M
Output: Final recommendation xy

1 forn=0,1...,N do

2 Update the hyperparameters of the geometry-aware GP model;

3 Select the next query point ,4+1 € M by optimizing the acquisition function
on the manifold, i.e., @, 1 = argmax,y vn(x; Dy);
4 Query the objective function to obtain yn41 ;

5 Augment the set of observed data Dy+1 = {Dn, (Tnt1,Yn+1)} ;
6 end

The acquisition function balances exploitation (e.g. selecting the point with the highest
posterior mean) and exploration (e.g. selecting the point with the highest posterior
variance) using the information given by the posterior functions. In this chapter, we use
an improvement-based acquisition function, namely, expected improvement (EI) [Mockus,
1975]. which is built on a function that incorporates the amount of improvement upon
the previous best observation f, and can be analytically computed as follows

pin () — f;i) (un(-’ﬂ) - fﬁ)
x;D,) = x)— [0 ————2 ) +on(z —_—, 7.3
(@ D) = () = )8 (P15 ) o ) (21 (73)
where ®(-) is the normal cumulative distribution function and ¢(-) represents the corre-
sponding probability density function. For EI, the next query intuitively corresponds
to the point where the expected improvement over the previous best observation f; is
maximal.

7.4 Bayesian Optimization on Riemannian Manifolds

In this section, we present the geometry-aware BO (GaBO) framework that naturally
handles the cases where the design space of parameters X is a Riemannian manifold or
a subspace of a Riemannian manifold, i.e. X € M. To do so, we first need to model
the unknown objective function f with a Gaussian process adapted to manifold-valued
data. This is achieved by defining geometry-aware kernels measuring the similarity of
the parameters on the manifold. Moreover, the selection of the next query point @41
is achieved by optimizing the acquisition function on the manifold M. The GaBO
framework is summarized in Algorithm 1.

7.4.1 Geometry-aware Kernels

The choice of the kernel function is crucial for the GP as it encodes our prior about
the function f. As our parameters x belong to a Riemannian manifold, it is relevant to
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Table 7.1 — Selected values of (B, for different Riemannian manifolds used in this
chapter.

53

++ ++

Bmin | 6.5 2.1 1.2 06 | 0.2

include this a priori knowledge in the choice of the kernel. A straightforward approach
to adapt distance-based kernels to Riemannian manifolds is to replace the Euclidean
distance d by the geodesic distance daq in the definition of the kernel. Thus, the geodesic
generalization of the SE kernel is given by (see [Jayasumana et al., 2015])

k(xi, x;) = fexp (—B A (s, :Bj)2> ) (7.4)

Although it has been successfully used in some applications, Feragen et al. [2015] showed
that such a kernel is valid, i.e., positive definite (PD) for all the parameters values, only if
the manifold is isometric to an Euclidean space. This implies that the geodesic SE kernel
is not valid for curved manifolds such as S¢ and Sff .- However, the same authors recently
conjectured that there exists intervals of the lengthscale parameter 5 > By, resulting
in PD kernels [Feragen and Hauberg, 2016]. In this work, we follow this approach and
determine experimentally the intervals of lengthscales 8 for which kernel matrices are
PD for the manifolds of interest.

In order to compute Byin, we sample 500 points from 10 Gaussian distributions on the
manifold with random mean and covariance matrix I. We then compute the corresponding
kernel matrix K, where k;; = k(x;, ;) for a range of § values with § = 1. We repeat
this process 10 times for each value of 5 and compute the percentage of PD geodesic
kernel matrices K. As the minimum eigenvalue function is continuous and Kg_,oc — I,
we fix Bmin equal to the minimum value of 8 for which 100% of the matrices K are PD.
Figure 7.1 shows the percentage of PD geodesic kernel matrices and the distribution of
their minimum eigenvalue Amin as a function of 3 for S% and Sf 4~ The values of By for
the manifolds considered in this chapter are provided in Table 7.1.

Other types of kernels are available for specific manifolds and may also be used in
BO [Oh et al., 2018]. For example, the geodesic Laplacian kernel is valid on spheres
and hyperbolic spaces [Feragen et al., 2015]. Moreover, kernels have been specifically
designed for several manifolds (see e.g. [Gong et al., 2012] for the Grassmannian).

Influence of £.,;, on GaBO

Introducing a minimum value on the parameter § of the kernel function (7.4) may
influence the surrogate GP model and therefore the values of the acquisition function
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Figure 7.1 — Experimental selection of S, in S% and Sf .- The percentage of PD geodesic
SE kernel matrices K computed from 10 different sets of 500 samples on the manifold
is depicted in blue (right axis). The corresponding distribution of minimum eigenvalue
Amin Of K is depicted in purple (left axis).

used to choose the next query point. We here illustrate and analyze the effect of Sy on
GaBO. Overall, the impact of 3,,;, on the BO framework will remain limited in most of
the cases.

The value of 8 determines the spatial influence of the observations in the Gaussian process
modeling the function f. In other words, the value of 8 controls the maximum size of
the extrapolation region around one observation. Small g values permit to extrapolate in
a large zone around one observation and therefore are well suited to model functions that
evolve slowly with only few observations. For this type of functions, where the optimum
B tends to be close to B,in, increasing 5,,;, may result in a slight increase of the number
of observations needed to properly model the function. Therefore, GaBO may need a
few more query points to converge.

Figure 7.2 shows an example of the influence of the 5 value on the choice of the next
query point. Two different cases with § = 6.5 and g = 25 are considered. The left graphs
display the mean of a GP based on 5 observations on the sphere with colors ranging
from yellow (low values) to dark purple (high values). The corresponding acquisition
function is displayed on the right graphs with the same colors. The next query point,
corresponding to the maximum of the acquisition function is depicted by a red square.
We observe that the zone of influence of the observations is reduced for 5 = 25 compared
to 8 = 6.5. This modifies the acquisition function, whose maximum is slightly closer to
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(b) =25

Figure 7.2 — Illustration of the effect of 3 on GaBO. The GP mean and corresponding
acquisition function are depicted by colors ranging from yellow (low values) to dark
purple (high values) on the left and right graphs, respectively. The observations and
next query point are depicted by black dots and a red square.

the observation for a higher value of 3. Therefore, the number of query points needed to
reach the optimum of the function may slightly increase if the value Sy is increased.
Note that the difference between the query points obtained with § = 6.5 and § = 25
remains small for a consequent difference between the two tested § values. Therefore, a
slight increase of Bmin will have a limited impact on the number of iterations needed by
GaBO to converge.

In the case of rapidly-varying functions that are therefore better modeled by 3 values
significantly higher than B, a slight change on (,,;, will not impact GaBO.

7.4.2 Optimization of Acquisition Functions

After refining the geometry-aware GP that models the unknown function f, the next
query point x,41 is selected by maximizing the acquisition function 7,. In order to
take into account the geometry of the domain X C M, we propose to optimize v,
using optimization techniques on manifolds. Note that the acquisition functions are
not altered but their search space is modified. In this context, optimization algorithms
on Riemannian manifolds constitute a powerful alternative to constrained optimization.
These geometry-aware algorithms reformulate constrained problems as unconstrained
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optimization problems on manifolds and consider the intrinsic structure of the space of
interest. Also, they tend to show lower computational complexity and better numerical
properties [Hu et al., 2019]. In this section, we describe the two optimization algorithms
used in the present and following chapters, namely the conjugate gradient (CG) and the
trust-region (TR) algorithms on Riemannian manifolds.

Some problems may require to bound the search domain to a subspace, for example,
to cope with physical limits or safety constraints in robotic systems when optimizing
end-effector orientations or impedance parameters. In such cases, and particularly when
the manifold is not a closed space, it is imperative to limit the domain of GaBO by
defining boundary conditions inside the manifold. Therefore, the acquisition function
is maximized over the domain X C M. While most of the literature on manifold
optimization focuses on problems where the only constraint is that the solution belongs
to the manifold, only few works proposed to extend constrained optimization algorithms
on Riemannian manifolds. In this context, we propose to extend constrained CG and
TR methods to Riemannian manifolds to cope with boundary conditions and linear
constraints in the optimization.

Notice that some problems may require to optimize several parameters belonging to
different manifolds. In this case, the domain of GaBO is a product of manifolds.
Consequently, the kernel function corresponds to the product of the kernels on the
different manifolds and the optimization of the acquisition function operates directly on
the product of manifolds.

Conjugate Gradient on Riemannian Manifolds

In this chapter, we use the conjugate gradient (CG) algorithm on Riemannian mani-
folds [Smith, 1994], described in Algorithm 2, to maximize the acquisition function =, (or
minimize ¢, =—",), at each iteration n of GaBO. The recursive process of the method
involves the same steps as the Euclidean CG, namely: (7) a line minimization along the
search direction ny (step 3); (i) the iterate update along the search direction my (step 4);
and (i77) the computation of the next search direction 7,1 combining the gradient of
the function at the new iterate zjy; and the previous search direction 7y (steps 5-6).
These different steps are illustrated for one iteration of the CG algorithm on the sphere
manifold S? in Figure 7.3. The differences with the Euclidean version are:

1. As the gradient V¢(zi), and thus the search direction 7, belong to the tangent
space of zp, the exponential map is needed to update the iterate along the search
direction;

2. The step size ay is fixed by solving

argmin o, (Exp., (oxm) ). (7.5)

(&2
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with a linesearch on the manifold (an example of linesearch algorithm on manifolds
is provided in Algorithm 3);

3. The previous search direction 7, has to be parallel transported to the tangent space
of 241 to be combined with the gradient of the new iterate —V¢,(2x41) € Tz, , M.

Note that we presented the CG on manifold with the Hastenes-Stiefel update parameter
ﬁ,I;IS, but other update techniques can also be extended to Riemannian manifolds [Absil
et al., 2007b].

Algorithm 2: Optimization of acquisition function with conjugate gradient on

Riemannian manifolds
Input: Acquisition function ~,, initial iterate zo € M
Output: Next parameter point &,

1 Set ¢, = —7, as the function to minimize and g = —V¢,(2o) as search direction ;
2 for k=0,1,...,K do

3 Compute the step size ay using linesearch on Riemannian manifold (Algo. 3);
4 | Set zpy1 = Exp,, (mp) ;

s | Compute G = e B e

6 Set Mg+1 = —Vdn(zkg1) + 51138 sz_%szrl(nk) ;

7 if a convergence criterion is reached then

8 ‘ break

9 end

10 end

11 Set Tpt1 = Zp11

Algorithm 3: Adaptive linesearch for conjugate gradient on Riemannian manifolds

Input: Function ¢, = —v,, iterate zj, search direction 1y, initial stepsize oy,
contraction factor ¢
Output: Final stepsize ay

1 for j=0,1...,J do

2 | Set z=Exp,, (axnk) ;

3 | if ¢n(2) > dn(zk) + 0.5 (Vn(2k), Mk)z, then
4 ‘ break

5 end

6 A = CO

7 end

8 if ¢, (z) > én(2zx) then

9 ‘ A = 0

10 end

As mentioned previously, the acquisition function may need to be optimized over a
bounded subspace of the manifold. In this context, we propose to extend the bound-
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(b) Step size computation (c) Updated iterate

Pn

sz—>zk.+1 (nk) sz—’zk+1(nk)

(d) Search direction transport  (e) Gradient computation  (f) Updated search direction

Figure 7.3 — Illustration of one iteration of the conjugate gradient algorithm on the sphere.
The function ¢, = —7, to minimize on S? is depicted by colors ranging from yellow (low
value) to dark purple (high value). Its optimum x* is represented as a black star. (a)
Initial state of the k-th iteration. The iterate z;, € S? and the search direction 7, € TszQ
are represented. (b) Computation of the step size «j, using linesearch (step 3 of Algo. 2).
(¢) Computation of the next iterate zx1 (step 4 of Algo. 2). (d) Parallel transport of
N € T2, S into the tangent space of the new iterate Tz,,,S%. () Computation of the
gradient —V¢n(21) € Tz,,,S% (f) Update of the search direction (step 6 of Algo. 2).
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constrained CG method [Vollebregt, 2014] to Riemannian manifolds to cope with boundary
conditions in the optimization. To do so, the steps 4-6 of Algorithm 2 are updated
as described in Algorithm 4. At each iteration, if the updated iterate zx 1 ¢ X, it is
projected back onto the feasible domain and the search direction is reinitialized. In
S¢, we bound the design space by setting limits on the components of x € S¢. If a
component is out of the limits, we fix it as equal to the closest limit and reformatted the

remaining components so that x still belongs to the manifold. For S, , we define limits

)
on the eigenvalues A of the SPD matrix. If an iterate z,1 ¢ X, we project it back to

the domain by reducing/increasing the maximum/minimum eigenvalue of the iterate.

Algorithm 4: Update of steps 4-6 of Algorithm 2 for a domain X C M

4 Set 2z 1 = Exp,, (axmi) ;
if zp11 € X then
| Execute steps 5-6 of Algorithm 2

else

Project zx4+1 to &

Set Mk+1 = —Vd(2k41);
end

Figure 7.4 shows an example of the application of Algorithm 4 on the unit circle S*.
In this example, an acquisition function is optimized over the domain S! with the
constraint y < 0.6. Assume that the point initially proposed by the algorithm in step 4
is z = (z,y)" = (0.49,0.87)T, depicted by a red dot. This point does not satisfy the
constraint y < 0.6, and needs to be projected back onto the feasible domain. As explained
previously, we first fix the value of the y component to the closest limit and obtain
the point Z = (0.49,0.6)", depicted by a yellow dot. Note that £ ¢ S' as its norm
is not equal to 1, thus we need to project this point on the manifold. To guarantee
that the bound constraints remain satisfied, we reformat only the components that
were not affected by the constraints. In this example, y is fixed at 0.6 and only the
component x varies to obtain a point on the manifold. Therefore, we obtain the final
point 241 = (0.8,0.6)T € X, depicted by a blue dot.

Trust Region on Riemannian Manifolds

In the next chapter, we exploit trust-region (TR) methods on Riemannian manifolds,
as introduced in [Absil et al., 2007a], to optimize the acquisition function 7, at each
iteration n of GaBO. The recursive process of the TR methods on Riemannian manifolds,
described in Algorithm 5, involves the same steps as its Euclidean equivalence, namely:
(7) the optimization of a quadratic subproblem mj, trusted locally, i.e., in a region around
the iterate (step 3); (ii) the update of the trust-region parameters — typically the
trust-region radius Ay — (steps 5-11); (i) the iterate update, where a candidate is
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1.0
Figure 7.4 — Application of Algo-
rithm 4 on S!. The manifold S!
is depicted by a black curve and the
constraint y < 0.6 is shown by the 0.1
green dotted line. The initial point
z, fixed point Z and final point 2y, 1
are depicted by red, yellow and blue
dots, respectively. Arrows show the 0.04
order of the projections.

accepted or rejected in function of the quality of the model my (steps 12-16). The
differences with the Euclidean version are:

1. The trust-region subproblem given by

argmin mg(n) s.t. |0z, < Ax, (7.6)
n€Tz, M

. 1
with mg(n) = ¢n(2r) + (=Vén(zr), Mz, + 5 (Hi, M)z, (7.7)

is defined and solved in the tangent space 7;, M, with V¢, (z;) € 7., M and H},
some symmetric operator on 7T, M. Therefore, its solution 7, corresponds to the
projection of the next candidate in the tangent space of the iterate z,. A truncated
CG algorithm to solve the subproblem is provided in Algorithm 6.

2. As a consequence of the previous point, the candidate is obtained by computing
Eszk (nk)) °

The symmetric operator Hj, on the tangent space 7., M typically approximates the
Riemannian Hessian Hess ¢, (2zx) [17], which may be expensive to compute. For example,
one may use the approximation of the Hessian with finite difference approximation
introduced in [Boumal, 2015], that has been shown to retain global convergence of the
Riemannian TR algorithm. Also notice that the steps 4 and 11 of Algorithm 6 correspond
to solving the second-order equation

<Vj7yj>zk + 27-A<Vj76j>zk + Ti<6j75j>zk - AZ? (7'8)

for 7a, which was obtained from ||v; + 7a6;||., = Ag by using the relationship between
the norm and the inner product and the properties of inner products.

For the cases where the domain of GaBO needs to be restricted to a subspace of the
manifold, we propose to extend the TR algorithm to cope with linear constraints. Similarly
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Algorithm 5: Optimization of acquisition function with trust region on Riemannian
manifolds

[JR

© o N O A

10
11
12
13
14
15
16
17
18
19
20
21

Input: Acquisition function ~,, initial iterate zg € M, maximal trust radius
Amax > 0, initial trust radius Ay < Anax, acceptance threshold p

Output: Next parameter point @,

Set ¢, = —, as the function to minimize ;

for k=0,1...,K do
Compute the candidate Exp,, (nx) by solving the subproblem
N = argmin my(n) s.t. [n]z, < Ay,
nETz,
with my (1) = ¢n(zr) + (~Vu(zk), M)z + 3(Hr, M)z, (Algo. 6);
Evaluate the accuracy of the model by computing pp = %(Zr];)k_(g);—(ifz:ﬁ ()nk)) ;
if pr < i then
‘ Reduce the trust radius Ag.q = iAk :
else if p, > 2 and ||ng| -, = Ak then
‘ Expand the trust radius Ay = min(2Ag, Apax);
else
| A1 =Ag;
end
if p > p then
‘ Accept the candidate and set zy,1 = Exp,, (nx) ;
else
‘ Reject the candidate and set zp1 = 2y ;
end
if a convergence criterion is reached then
‘ break
end
end
Set Tpi11 = 2g41
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Algorithm 6: Truncated conjugate gradient for solving the trust-region subproblem
(step 3 of Algorithm 5)

Input: Trust-region subproblem 7.6 to minimize, given ¢, (2zx), Hy
Output: Update vector ny

1 Set the initial iterate vy = 0, residual g = V¢, (zx) and search direction §g = —7p;
2 for j=0,1...,J do
3 if <5j7Hk5j>Zk < 0 then
4 Compute 7ao > 0 s.t. ||V + 7adj|2, = A ;
5 Set Vi1 =V, + TA(SJ' ;
6 break
7 end
8 Compute the step size a; = % :
3 kOj )z
9 Set Vji1 =V + ajéj ;
10 if HVj+1sz > Ak then
11 Compute 7ao > 0 s.t. ||V + 7a6;]|2, = Ak ;
12 Set vjy1 = v +7a0; ;
13 break
14 end
15 Set Tit1 =T+ aijéj;
16 | Set dj41 = —Tjp1+ 4<T]<t~;:j;::zk j
17 if a convergence criterion is reached then
18 break
19 end
20 end

21 Set n = V11
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to the Euclidean case [Byrd et al., 1987; Yuan, 1999], the trust-region subproblem can
be augmented as

argmin my,(n) s.t. |0z, < A2 and ||(cx + Vern) ||z, < &k, (7.9)
n€Tz, M
where ¢, is a vector of linearized constraints ¢; = (c1(2x)...car(zx))", Ve is the
corresponding gradient, (x)~ = z for equality constraints ¢,,(2;) = 0 and (x)™ = min(0, z)

for inequality constraints ¢,,(zx) > 0. The subproblem (7.9) can be solved with the
augmented Lagrangian or the exact penalty methods on Riemannian manifolds presented
in [Liu and Boumal, 2019].

In the context of Bayesian optimization, a common assumption is that the optimum
should not lie in the border of the search space. Therefore, the acquisition function does
not need to be exactly maximized close to the border of the search space. However, it is
important to stay in the search space to cope with physical limits or safety constraints
of the robotic system. By exploiting these two considerations, we propose to optimize
the subproblem (7.9) in a simplified way, by adapting Algorithm 6 to cope with the
constraints. At each iteration, we verify that the iterate v, = v; 4+ o;0; satisfies the
constraints. If the constraints are not satisfied, the value of the step size a; is adjusted
and the algorithm is terminated. This process is described in Algorithm 7 and is used to
augment the steps 5, 12 and 14 of Algorithm 6. Note that the proposed approach ensures
that the constraints are satisfied, but is not guaranteed to converge to optima lying
on a constraint border. However, we did not observe any significant difference in the
performance of GaBO by using this approach compared to more sophisticated methods.

Algorithm 7: Addition to steps 5, 12 and 14 of Algorithm 6 to solve the trust-region
subproblem (7.9).
Set ¢, = c(z) ;
if ||(ck + Vegvjsr) [z, > 0 then
Compute 7. 2 0 s.t. | (Ck + Ve (v + Tc5j))_ [z, = 0;
Set vjy1 = vj +7eb; ;

break
end

Other Optimization Methods on Riemannian Manifolds

We described the two optimization algorithms that we used to maximize the acquisition
function in the GaBO framework and we proposed to extend them to cope with boundary
conditions on Riemannian manifolds. These two algorithms lead to satisfying performance
to optimize acquisition functions in the context of GaBO (see also Section 7.5) and have a
low computational cost compared to some other optimization algorithms on Riemannian
manifolds. Notice that, as the solutions obtained with CG or TR may depend on the
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initial iterate, a good practice consists in starting the optimizations from several initial
points and select the best found solution as the next query point of the BO.

It is worth noticing that other optimization algorithms on Riemannian manifolds may be
used, see e.g., [Bonnabel, 2013] for a stochastic gradient descent algorithm, [Borckmans
et al., 2010] for an extension of particle swarm optimization and [Absil et al., 2007b]
for algorithms related to Newton’s method. In particular, the Riemannian augmented
Lagrangian method and the Riemannian exact penalty method introduced in [Liu and
Boumal, 2019] have been shown to efficiently cope with equality and inequality constraints
and may be exploited to bound the search domain to a subspace of a manifold. Compared
to these two approaches, the advantage of the constrained CG an TR algorithms on
Riemannian manifolds proposed in this chapter is that they do not require any parameters

tuning.

7.5 Experiments

We test GaBO using some benchmark test functions and two simulated experiments
with a 7-DOF Franka Emika Panda robot. All the implementations were built on the
Python libraries GPflow [Matthews et al., 2017], GPflowOpt [Knudde et al., 2017] and
Pymanopt [Townsend et al., 2016]. The simulated experiments were performed using
Pyrobolearn [Delhaisse et al., 2019]. All the BO implementations use EI as acquisition

function and were initialized with 5 random samples.

7.5.1 Benchmark Functions

We use a couple of benchmark test functions to study the performance of GaBO in
the Riemannian manifolds S% and Sil .- To do so, we first project the test functions to
these manifolds and then carry out the optimization by running 100 trials with random
initialization. The selection of the kernel parameters is carried out by MLE. The search
domain X of the test functions corresponds to the complete manifold for S* and to SPD
matrices with eigenvalues A € [0.001, 5] for S¢, .

Figure 7.5 shows an example of the evolution of the surrogate model of GaBO for the
Ackley function on S2. The left column displays the mean of the GP model on the sphere
with colors ranging from yellow (low values) to dark purple (high values). The observed
points x,, are depicted by black dots. The global minimum x* = (0,0,0)T is shown as
a green star and the current best guess is depicted by a blue square. The middle and
right columns show the GP model on the sphere projected on the dimensions x1, 2 and
x2, x3, respectively. The mean value of the GP is represented on the vertical dimension
with the same colors as the left column. The variance of the model, represented with
two standard deviations, is depicted by a gray envelope around the mean. We observe
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that the region around the optimum of the objective function is well modeled by GP
model after 10 iterations. The current best guess is also close to the optimum. After 30
iterations, the GP results in a good approximation of the objective function with a low
variance in the region around the optimum value.

In the case of S¢, we compare GaBO against the classical BO which carries out all the
operations in the Euclidean space (hereinafter called Euclidean BO). As the query points
must belong to 8%, i.e., ||z|| = 1, the maximization of the acquisition is considered a
constrained problem in Euclidean BO. We minimize the Ackley function for parameter
spaces of dimensionality d = {2,3,4} to analyze the methods performance as the
parameter dimension increases. Figure 7.6 displays the median and the first and third
quartiles of the logarithm of the simple regret along 80 BO iterations for the three
aforementioned hypersphere manifolds. We observe that, although the performance of
the two algorithms is comparable for low-dimensional hyperspheres, GaBO outperforms
the Euclidean BO when the dimension increases: GaBO converges faster to a better
optimizer with lower variance than Euclidean BO. This is particularly evident for the
Ackley function on S*, where the median regret of Euclidean BO remains far from the
minimum value and displays high variance, while GaBO converges to a value close to the
optimum for all the trials after 70 iterations. The fact that GaBO can be slightly slower
than the Euclidean BO to converge in S? may be due to the relatively high value of
Bmin in the kernel (7.4) for this manifold. As explained in Section 7.4.1, high Sy limits
the spatial influence of each observation on the modeling of the function f. Thus, more
observations are needed to model slowly-evolving regions of the function. A solution to
this is to bound the domain of the optimization to a subspace of the manifold, which is
often necessary in most real applications, and to determine the value Sy, of the kernel
for this subspace, resulting in a lower Buyin.

Regarding the manifold Sﬁ o
mented with the constraint Ay, > 0) and an alternative implementation that takes
advantage of the Cholesky decomposition of an SPD matrix A = LL", so that the
resulting parameter is the vectorization of the lower triangular matrix L (hereinafter

we compare our method against the Euclidean BO (aug-

called Cholesky BO). In this case, we test two functions, namely a bimodal Gaussian
distribution and the Ackley function. Figure 7.7 shows the regret for 300 iterations of
GaBO, Cholesky BO and Euclidean BO for the two test functions in S?,. We observe
that GaBO outperforms Cholesky and Euclidean BO in both cases.

Table 7.2 provides the computation time per iteration of GaBO, Euclidean BO and
Cholesky BO for the optimization of the Ackley function on the different manifolds
used in the chapter. Overall, the computation time of GaBO is slightly higher than
the Euclidean equivalent. The increase observed for Si 1 when compared to S¢ is due
to the fact that the exponential and logarithmic maps are more complex in Sf . than
their equivalent on the hyperspheres, as they involve matrix exponential and logarithm
computations. However, the increase of the computation time is not a major drawback as
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(d) Tteration 30

Figure 7.5 — Surrogate GP of GaBO for the minimization of the Ackley function in S2.
The GP mean is depicted by colors ranging from yellow (low values) to dark purple (high
values) and + two standard deviations in gray (projected graphs). The global minimum
and the current best guess are shown as a green star and a blue square.
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Figure 7.6 — Logarithm of the simple regret in function of the BO iterations for the

Ackley function in 8% with d = {2,3,4} over 100 trials. The first and third quartiles are
represented with a light tube around the median line.
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(a) Ackley function in §%,
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Figure 7.7 — Logarithm of the simple regret for benchmark test functions, i.e., (a) Ackley
function and (b) bimodal distribution, in the Riemannian manifold of SPD matrices 82,

over 100 trials. The first and third quartiles are represented with a light tube around the
median line for the three BO methods.
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physical robotic experiments will take significantly longer than the optimization process
to collect the next value of the function f.

Table 7.2 — Computation time for one iteration of the different BO frameworks when
optimizing the Ackley function on several manifolds. All the time values are given in
seconds.

S? S St S_%Jr
GaBO 1.55+0.32 | 1.49+ 042 | 1.94+0.42 | 6.08 +5.36
Euclidean BO | 0.48 +£0.14 | 0.494+0.17 | 0.53 £0.14 | 0.24 £ 0.17
Cholesky BO - - - 0.54 +0.12

7.5.2 Simulated Robotic Experiments

We here evaluate GaBO performance when looking first for the optimal orientation for
a simple regulation task, and second for the optimal stiffness matrix of an impedance
control policy, which is of interest for variable impedance learning approaches. For both
experiments, we use a simulated 7-DoF Franka Emika Panda robot. The robot was
initialized from a joint position (0.,0.3,0.,—1.,0.,1.5,0.)T for all the experiments.

In the first experiment, we use BO as an orientation sampler aiming at satisfying
the requirements defined by a cost function. This may be useful for tasks where the
orientation reference of a controller needs to be refined to improve the task execution. In
this experiment, the velocity-controlled robot samples an orientation reference & = q,
around a prior orientation §,, fixed by the user, with the aim of minimizing the cost
function

f(@) = wg| A(G, @)|* + we || 7||* + wycond (M), (7.10)

where g is the current end-effector orientation, and cond(M) is the condition number of
the linear velocity manipulability ellipsoid. This cost function aims at minimizing the
error between the prior and the current end-effector orientation with low joint torques
and an isotropic manipulability ellipsoid. We run 30 trials with random initialization for
the cost function (7.10) with parameters fixed as in Table 7.3. The corresponding prior
orientation g, is illustrated in Figure 7.8a. Figure 7.8b depicts the best final orientation
obtained after 80 iterations of GaBO. We observe that the orientation is close to the
prior q,. However, the prior and best final orientations do not completely match due to
the additional terms in the cost (7.10) that is minimized by GaBO. Figure 7.9 shows the
total cost for 80 iterations of GaBO and Euclidean BO. We observe that GaBO converges
faster to a better optimizer with a close-to-zero variance over the trials. Note that the
difference between the two methods is accentuated compared to the benchmark function
in S3.
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Table 7.3 — Cost parameter values for the orientation sampling experiment.

q
(0.408,0.408,0,0.816) T

W

1074

0.1

(a) Prior orientation

cost (7.10) with GaBO.

(b) Optimized orientation
Figure 7.8 — Illustrations of the end-effector orientation learning. (a) shows the prior
orientation g, and (b) depicts the best orientation obtained after the optimization of the

6000 1

GaBO

Euclidean BO
= 50001
—

4000

mean and one standard deviation are represented.

Figure 7.9 — Total cost for end-effector orientation learning in S® over 30 trials. The
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Figure 7.10 — Hlustration of the direct policy search
experiment. The robot is depicted in its initial config-
uration. The desired final position p and the external
force f€¢ are indicated by a red dot and a red arrow,
respectively.

Since direct policy search has been a successful RL approach in robotics, for our second
experiment, we seek to find the optimal Cartesian stiffness of a torque-controlled 7-DOF
robotic arm implementing a Cartesian control policy

f=K"p-p) - KPp, (7.11)

where p and p are the linear position and velocity of the robot end-effector, K7 and KP
are stiffness and damping matrices, and f is the control force (transformed to desired
torques via 7 = JT f). The robot task consists of tracking a desired Cartesian position
p while a constant external force f€ is applied to its end-effector (see Figure 7.10). The
policy parameter corresponds to the stiffness matrix, that is & = K7. The stiffness-
damping ratio is fixed as critically damped. We tested GaBO, Euclidean BO and Cholesky
BO using two different cost functions. The cost function fi, defined as

F1(KP) = wplp — pII* + wa det(KT) + wecond(K ), (7.12)

aims at accurately tracking the desired position using a low-volume isotropic stiffness
matrix, while fo aims at tracking the desired position accurately with low torques with

fo(KP) = wp|p — pl* + w- 7%, (7.13)

for K7 € {§?_,
The scalars w are parameters that weight the different components of the costs. In the
case of 83 +» only a 2 x 2 submatrix of the full stiffness K P is optimized with BO, while
the other components stay constant. Instead, all the components of the 3 x 3 matrix

Si +}. For fy, a —1 reward was added if the desired position was reached.

K7 are optimized in Si .- We run 15 randomly initialized trials for each cost function.
The parameters of the functions were fixed as given in Tables 7.4 and 7.5.

Figure 7.11 shows the total cost of the stiffness learning for the two cost functions in
S_% . and S_‘E .- We observe that Cholesky BO tends to outperform Euclidean BO as the
complexity of the cost is increased, and that GaBO outperforms the other methods for all
the test cases. Moreover, while the performance of Euclidean and Cholesky BO strongly
degrades as the dimensionality increases, GaBO still provides accurate and low-variance
solutions.
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Table 7.4 — Cost parameter values of f1 in the optimal stiffness learning experiment.

p [m] D | wp

Wq

We € [N]

(0.66,—0.01,0.69)T | 0 | 1

10—13

10~ | (0,20, —20)"

Table 7.5 — Cost parameter values of fs in the optimal stiffness learning experiment.

p [m] P

wp | wr f¢ [N]

(0.5,—0.4,0.75)T | 0

1 | 107 | (0,20, —20)T

[

------ GaBO
——— Euclidean BO
— Cholesky BO

(c) f2(K),K € 82,

[

(d) f2(K), K € S,

Figure 7.11 — Total cost for stiffness learning of a Cartesian impedance controller using
direct policy search over 15 trials. The mean and one standard deviation are represented.
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7.6 Conclusion

We proposed GaBO, a geometry-aware Bayesian optimization framework that exploited
the geometry of the search space to properly seek optimal parameters that lie on
Riemannian manifolds. To do so, we used geometry-aware kernels that allow GP to
properly measure the similarity between parameters lying on a Riemannian manifold.
Moreover, we exploited Riemannian manifold tools to consider the geometry of the search
space when optimizing the acquisition function. GaBO provided faster convergence,
better accuracy and lower solution variance when compared to geometry-unaware BO
implementations. Interestingly, these differences were accentuated as the manifold
dimensionality increased. Moreover, our proof-of-concept experiments open the door
towards optimizing RL policies for complex robot learning scenarios where geometry-

awareness may be relevant.

Following the line drawn by the aforementioned observations, the next chapter proposes
to evaluate the GaBO framework in high-dimensional BO problems and to scale it towards
optimization in high-dimensional search spaces lying on Riemannian manifolds.
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Handling High-dimensional
Problems with GaBO

In the previous chapter, we introduced GaBO, a geometry-aware
Bayesian optimization framework that exploits the geometry of the

) o1 Ane . G A
search space to seek optimal parameters on Riemannian manifolds. We . o
showed that GaBO outperforms geometry-unaware BO implementa- ¥ /
tions, especially when the dimensionality of the search space increased. S§? ‘ i 4

In this chapter, we propose to scale GaBO towards optimization in high-dimensional search
spaces. To do so, we first propose to evaluate the performance of GaBO in high-dimensional
problems. Moreover, we introduce HD-GaBO, a high-dimensional GaBO framework minimiz-
ing objective functions on Riemannian manifolds that possess an intrinsic low-dimensionality.

Source code
Source codes related to this chapter are available at:
https://github.com/NoemieJaquier/GaBOtorch.
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Chapter 8. Handling High-dimensional Problems with GaBO

8.1 Introduction

In the previous chapter, we showed that the performance of BO can be improved via
the introduction of geometry-based domain knowledge. To do so, we presented GaBO, a
geometry-aware BO framework that seeks optimal parameters on Riemannian manifolds.
As mentioned in Section 7.1, BO performance is prone to degrade as the search space
dimensionality increases, leading to research BO methods that can leverage the structure
present in high-dimensional objective functions [Frazier, 2018]. In this context, the aim
of this chapter is two-fold: (7) we evaluate GaBO for high-dimensional BO problems, and
(#7) we propose to extend the GaBO framework towards minimizing objective functions
that evolve along underlying low-dimensional latent spaces of Riemannian manifolds. We
start this chapter by reviewing existing high-dimensional BO methods.

A common assumption in high-dimensional BO approaches is that the objective function
depends on a limited set of features, i.e. that it evolves along an underlying low-
dimensional latent space. Following this hypothesis, Wang et al. [2013] proposed REMBO,
a solution based on random embeddings where the data are projected into a random
linear space in which the optimization is carried out. Various extensions of REMBO
have then been proposed in the literature, see e.g., [Munteanu et al., 2019; Binois
et al., 2020]. Although these methods have been shown to perform well on a variety of
problems at a low computational cost, they assume simple bound-constrained domains
and may not be straightforwardly extended to complicatedly-constrained parameter
spaces. Contrasting with random projections, other approaches proposed to learn the
underlying low-dimensional — linear or nonlinear — latent space [Djolonga et al., 2013,;
Moriconi et al., 2019; Zhang et al., 2019]. While the latent space is often learned via
unsupervised methods, Zhang et al. [2019] proposed to further exploit the evaluations of
the objective function to determine the latent space in a supervised manner. Moriconi
et al. [2019] developed an encoder-decoder-based BO model, where both parts are learned
in a supervised manner. The encoder part is composed of a GP model that jointly learns
a parametric mapping into a latent space and the regression parameters [Calandra et al.,
2016], while the decoder part maps queries from the latent to the ambient space with
a multi-output GP. After designing a sequential variational auto-encoder to embed the
observations into a latent space, Antonova et al. [2019] also exploited the observed
values of the objective function to compress the search space in the regions leading
to undesirable behaviors. Although the aforementioned approaches shape the latent
space as a function of the observed values of the objective function, the integration of a
priory domain knowledge related to the parameter space is not considered in the learning
process. Moreover, the decoder parts of the aforementioned approaches may not comply
easily to recover query points in a complex parameter space.

Other relevant works in high-dimensional BO substitute or combine the low-dimensional
assumption with an additive property, assuming that the objective function is decomposed
as a sum of functions of low-dimensional sets of dimensions [Kandasamy et al., 2015; Li
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et al., 2016; Mutny and Krause, 2018]. Therefore, by considering a Gaussian process
(GP) surrogate model for the BO process, the acquisition function of each group can be
optimized independently. In a similar line, inspired by the dropout algorithm in neural
networks, Li et al. [2017] proposed to deal with high-dimensional parameter spaces by
optimizing only a random subset of the dimensions at each iteration. Similarly, Yuan
et al. [2019] exploited domain knowledge to partition the parameter space into physically
meaningful sets and alternatively optimize each subspace. Although the aforementioned
strategies are well adapted for simple Euclidean parameter spaces, they may not generalize
easily to complex domains. In the case where the parameter space is not Euclidean or
must satisfy complex constraints, the problem of partitioning the space into subsets of
specific dimensions becomes difficult. Moreover, these subsets may not be easily and
independently optimized as they must satisfy global constraints acting on the parameters
domain.

As discussed in the previous chapter, introducing domain-knowledge via geometry-aware
kernels and acquisition functions has recently been shown to improve the performance and
scalability of BO. Following this research line, we hypothesize that building and exploiting
geometry-aware latent spaces may improve the performance of BO in high dimensions
by considering the intrinsic geometry of the parameter space. Figure 8.1 illustrates this
idea for Riemannian manifolds. The objective function on the sphere S? depicted in
Figure 8.1a does not depend on the value z; and is therefore better represented on the
low-dimensional latent space S'. In the example represented in Figure 8.1b, the stiffness
X € Si . of a robot is optimized for the robot to push objects lying on a table. In this
case, the stiffness along the vertical axis x3 does not influence the ability of the robot to
push the objects. We may thus optimize the stiffness along the axes x1 and xo, which
correspond to optimizing a SPD matrix in the latent space 83 +- Therefore, similarly to
the high-dimensional BO frameworks where a Euclidean latent space of the Euclidean
parameter space is exploited, here the objective functions may be efficiently represented
in a latent space that inherits the geometry of the original Riemannian manifold. In
general, this latent space is unknown and may not be aligned with the coordinate axes.

Following these observations, we propose a novel high-dimensional geometry-aware
BO framework (hereinafter called HD-GaBO) for optimizing parameters lying on high-
dimensional Riemannian manifolds. Our approach is based on a geometry-aware GP
surrogate model that learns a mapping onto a latent space inheriting the geometry of
the original space along with the representation of the objective in this latent space (see
Section 8.2). The next query point is then selected on the low-dimensional Riemannian
manifold using geometry-aware optimization methods. We evaluate the performance of
GaBO and HD-GaBO on various high-dimensional benchmark functions. Our results
show that bringing-geometry awareness into BO improves its scalability, especially for
parameter spaces whose underlying geometry is complex. Moreover, we show that HD-
GaBO is able to efficiently and reliably optimize high-dimensional objective functions
that possess an intrinsic low dimensionality.
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(a) 8?2 — St

Figure 8.1 — Illustration of the low-dimensional assumption on Riemannian manifolds.
(a) The function on S? is not influenced by the value of z1 and may be represented more
efficiently on the manifold S*. (b) The stiffness matrix of a robot is optimized to push
objects on a table. As the stiffness along the axis x3 does not influence the pushing
performance, the cost function may be better represented in a latent space S?r .

8.2 High-dimensional Geometry-aware Bayesian Optimiza-
tion

In this section, we present the high-dimensional geometry-aware BO (HD-GaBO) frame-
work that naturally handles the case where the design space of parameters X is (a
subspace of) a high-dimensional Riemannian manifold, i.e. X C MP. We assume here
that the objective function satisfies the low-dimensional assumption and thus only varies
within a low-dimensional latent space. Moreover, we assume that this latent space can be
identified as a low-dimensional Riemannian manifold M? inheriting the geometry of the
original manifold MP, with d < D. Notice that the same assumption is generally made
by Euclidean high-dimensional BO frameworks, as the objective function is represented
in a latent space R% of RP. In particular, we model the objective function f: MP — R
as a composition of a structure-preserving mapping m : MP — M? and a function
g: M? = R, sothat f = gom. A model of the objective function is thus available
in the latent space M9, which is considered as the optimization domain to maximize
the acquisition function. As the objective function can be evaluated only in the original
space MP | the query point z € Z, with Z C M¢, obtained by the acquisition function is
projected back into the high-dimensional manifold with the inverse projection mapping

m~1: M4 MP.

In HD-GaBO, the latent spaces are obtained via nested approaches on Riemannian
manifolds featuring parametric structure-preserving mappings m : MP — M. Moreover,
the parameters ©,, and @, of the mapping m and function g are determined jointly
in a supervised manner using a geometry-aware GP model, as detailed in Section 8.2.1.
Therefore, the observed values of the objective function are exploited not only to design
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the BO surrogate model, but also to drive the dimensionality reduction process towards
expressive latent spaces for a data-efficient high-dimensional BO. Considering nested
approaches also allows us to build a mapping m ! that can be viewed as the pseudo-inverse
of the mapping m. As explained in Section 8.2.3, the corresponding set of parameters
®,,-1 includes the projection mapping parameters ®,, and a set of reconstruction
parameters ©,, so that @,,-1 = {©,,, ©, }. Therefore, the parameters @, are determined
as to minimize the reconstruction error, as detailed in Section 8.2.2.

The proposed HD-GaBO framework is summarized in Algorithm 8. Similarly to GaBO,
geometry-aware kernel functions are utilized in HD-GaBO (see Section 8.2.1), and the
acquisition function is optimized using techniques on Riemannian manifolds, although
the optimization is carried out on the latent Riemannian manifold in HD-GaBO.

Algorithm 8: HD-GaBO

Input: Initial observations Dy = {(z4, yi)} 0, xi € MP, y; € R

Output: Final recommendation ay

1 forn=0,1...,N do

2 Update the hyperparameters {®,,, ®,} of the geometry-aware mGP model ;
3 Project the observed data into the latent space, so that z; = m(x;) ;
4

Select the next query point z,,1 € M? by optimizing the acquisition function
in the latent space, i.e., zp41 = argmax,cz v (2; {(2i, ¥i)}) ;

Update the hyperparameters ©,,,-1 of the inverse projection ;

Obtain the new query point @, 11 = m~!(z,.1) in the original space ;

Query the objective function to obtain y,+1 ;

Augment the set of observed data Dyy1 = {Dn, (®n+1,Ynt1)} ;

© 0w o w;

end

8.2.1 HD-GaBO Surrogate Model

The choice of latent spaces is crucial for the efficiency of HD-GaBO as it determines
the search space for the selection of the next query point @, 1. In this context, it is
desirable to base the latent-space learning process not only on the distribution of the
observed parameters x,, in the original space, but also on the quality of the corresponding
values ¥y, of the objective function. Therefore, we propose (i) to supervisedly learn a
structure-preserving mapping onto a low-dimensional latent space, and (i) to learn the
representation of the objective function in this latent space along with the corresponding
mapping. To do so, we exploit the so-called manifold Gaussian process (mGP) model
introduced in [Calandra et al., 2016]. It is important to notice that the term manifold
denotes here a latent space, whose parameters are learned by the mGP, which does not
generally correspond to a Riemannian manifold.

In a mGP, the regression process is considered as a composition g o m of a parametric
projection mapping m onto a latent space and a function g. Specifically, a mGP is defined

159



Chapter 8. Handling High-dimensional Problems with GaBO

as a GP so that f ~ GP(um, km) with mean function p, : X — R and positive-definite
covariance function k,, : X x X — R defined as

pim () = pr(m()). (8.1)
(i, 25) = k(m(i), m(=)), (8.2)

with p: Z2 - R and k: Z x Z — R a positive-definite covariance function. The mGP
parameters {@,,, 4} are estimated by maximizing the marginal likelihood of the model,
so that

{®], G)Z} = argmax p(y| X, 0,,, 0, ). (8.3)

m,Pg

In the original mGP model [Calandra et al., 2016], the original and latent spaces are
subspaces of Euclidean spaces, so that X C RP and Z C RY, respectively. Note that
the idea of jointly learning a projection mapping and a representation of the objective
function with a mGP was also exploited in the context of high-dimensional BO in the
work of Moriconi et al. [2019]. In [Calandra et al., 2016; Moriconi et al., 2019], the
mapping m : RP — R? was represented by a neural network. However, in the HD-GaBO
framework, the design space of parameters X C MP is a high-dimensional Riemannian
manifold and we aim at learning a geometry-aware latent space Z C M¢ that inherits
the geometry of X'. Thus, we define a structure-preserving mapping m : MP — M? as
a nested projection from a high- to a low-dimensional Riemannian manifold of the same
type, as described in Section 8.2.3. Moreover, as in GaBO, we use a geometry-aware kernel
function k that allows the GP to properly measure the similarity between parameters
z = m(zx) lying on the Riemannian manifold M?. Therefore, the surrogate model of
HD-GaBO is a geometry-aware mGP, that leads to a geometry-aware representation of
the objective function in a locally optimal low-dimensional Riemannian manifold M?.

Importantly, the predictive distribution for the mGP f ~ GP(um, k) at test input
& is equivalent to the predictive distribution of the GP g ~ GP(u, k) at test input
Z = m(&). Therefore, the predictive distribution can be straightforwardly computed in
the latent space. This allows the optimization function to be defined and optimized in
the low-dimensional Riemannian manifold M instead of the original high-dimensional
parameter space MP”. Then, the selected next query point 2,41 in the latent space
needs to be projected back onto the manifold MP in order to evaluate the value of the
objective function.

8.2.2 Input Reconstruction from the Latent Embedding to the Origi-
nal Space

After optimizing the acquisition function, the selected query point z,41 in the latent
space needs to be projected back onto the manifold MP in order to evaluate the value
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of the objective function. In order to solve this problem in the Euclidean case, Moriconi
et al. [2019] proposed to learn a reconstruction mapping r : R? — RP based on multi-
output GPs. In contrast, we propose here to further exploit the nested structure-
preserving mappings in order to project the selected query point back onto the original
manifold. As shown in Section 8.2.3, a pseudo-inverse parametric projection mapping
m~t: M?% - MP can be built from the nested Riemannian manifold approaches. This
inverse mapping depends on a set of parameters ©,,-1 = {©,,,0,}. Note that the
parameters ©,, are learned with the mGP surrogate model, but we still need to determine
the reconstruction parameters @,. While the projection mapping m aimed at finding
an optimal representation of the objective function, the corresponding pseudo-inverse
mapping m~! should (ideally) project the data z in the latent space M¢? onto their
original representation « in the original space MP. Therefore, the parameters ©, are
obtained by minimizing the sum of the squared residuals on the manifold MP, so that

®; = argmin Z dfwg (a:l-, m~(zi, O, @T)), (8.4)

r =1

where d o is the distance between two points on the manifold MP (see also Section 2.2).

8.2.3 Nested Manifolds Mappings

As mentioned previously, the surrogate model of HD-GaBO learns to represent the
objective function in a latent space M? inheriting the geometry of the original space
MP. To do so, the latent space is obtained via nested approaches, which map a
high-dimensional Riemannian manifold to a low-dimensional latent space inheriting
the geometry of the original Riemannian manifold. While various other dimensionality
reduction techniques have been proposed on Riemannian manifolds [Fletcher and Joshi,
2004; Goh and Vidal, 2008; Sommer et al., 2010, 2014; Hauberg, 2016; Pennec, 2018],
the resulting latent space is usually formed by curves on the high-dimensional manifold
MP . This would require to optimize the acquisition function on MP with complex
constraints, which may not be handled efficiently by optimization algorithms. In contrast,
nested manifold mappings reduce the dimension of the search space in a systematic
and structure-preserving manner, so that the acquisition function can be efficiently
optimized on a low-dimensional Riemannian manifold with optimization techniques on
manifolds. Moreover, intrinsic latent spaces may naturally be encoded with nested
manifold mappings in various applications (see Figure 8.1). Nested mappings for the
sphere and SPD manifolds are presented in the following.

Sphere manifold

The concept of nested spheres, introduced in [Jung et al., 2012], is illustrated in Figure 8.2.
Given an axis v € SP, the sphere is first rotated so that v aligns with the origin, typically
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defined as the north pole (0,...,0,1)T. Then, the data € S”, depicted in purple, are
projected onto the subsphere AP~1 defined as

AP, r) = {w e SP : dgp (v, w) =1}, (8.5)

where r € (0,7/2], so that xp = cos(r). The last coordinate of x is then discarded and
the data z € SP~!, depicted by blue dots in Figure 8.2¢, are obtained by identifying the
subsphere AP~ of radius sin(r) with the nested unit sphere SP~! via a scaling operation.
Specifically, given an axis vp € SP and a distance rp € (0, 7/2], the projection mapping
mp : SP — SP~1 is computed as

1
Z =mp (*’B) - Rtrunc <

- sin(rp)x + sin (dSD(UD’ i TD)UD>, =0
sin(rp)

sin (dSD (vp, :L'))
—_— ——

scaling rotation projection onto AP—1
+ dim. red.

with R € SO(D) as the rotation matrix that moves v to the origin on the manifold
and Ryiyune the matrix composed of the D — 1 first rows of R. Notice also that the
order of the projection and rotation operations is interchangeable. In (8.6), the data
are simultaneously rotated and reduced after being projected onto AP~1. However, the
same result may be obtained by projecting the rotated data Rz onto AP~! using the
rotated axis Rv and multiplying the obtained vector by the truncated identity matrix
Iiune € RP=IXD This fact will be later exploited to define the SPD nested mapping.
Then, the full projection mapping m : SP — S? is defined via successive mappings (8.6),
so that

m=mq4+1°...0Mp—1°mMp, (87)

with parameters {vp,...v411,7D,...7q+1} such that v, € §™ and r,, € (0,7/2]. Im-
portantly, notice that the distance dga(m(z;), m(zx;)) between two points ;, x; € SP
projected onto S? is invariant w.r.t the distance parameters {rp,...rqs1} (see Ap-
pendix C.1 for a proof). Therefore, when using distance-based kernels, the parameters
set of the mGP projection mapping corresponds to ©,, = {vp,...vg+1}. The optimiza-
tion (8.3) is thus carried out with optimization techniques on Riemannian manifolds on
the domain SP x - -« x ST x Mg, where M, is the space of GP parameters @, (usually
Mg ~Rx...xR).

As shown in [Jung et al., 2012], an inverse transformation mp' : SP~! — SP can be

x=mp'(z)=R' (sin(rdﬂ)z) . (8.8)

cos(Tq+1)

computed as

Therefore, the query point selected by the acquisition in the latent space can be projected
back onto the original space with the inverse projection mapping m~"' : S* — SP given
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-1

—1 0 1

(a) Rotation of §? (b) Projection onto A! (c) A! identified with S*

Figure 8.2 — Illustration of the nested sphere projection mapping. Data on the sphere S2,
depicted by purple dots, are projected onto the subsphere A!, which is then identified
with the sphere S'. The projected data are depicted as blue dots.

by

m! = mBl o0...0 m;jl. (8.9)
As the axes parameters are determined within the mGP model, the set of reconstruction
parameters is given by @, = {rp,..., 7411}

SPD manifold

Although not explicitly named as such, the dimensionality reduction technique for the
SPD manifold introduced in [Harandi et al., 2014, 2018] can be understood as a nested
manifold mapping. Specifically, Harandi et al. [2014, 2018] proposed a projection mapping
m: Sf+ — Sf+, so that

Z=m(X)=WTXW, (8.10)

with W € RP*4. Note that the matrix Z € Sﬁ . is guaranteed to be positive definite if W
has a full rank. As proposed in [Harandi et al., 2014, 2018], this can be achieved without
loss of generality by imposing orthogonality constraint on W such that W € Gp 4, i.e.,
WTW = I, where G p,d denotes the Grassmann manifold corresponding to the space
of d-dimensional subspaces of R” [Edelman et al., 1998]. Therefore, in the case of the
SPD manifold the projection mapping parameter set is @, = {W'}. Specifically, the
optimization (8.3) is carried out on the product of Riemannian manifolds G”*¢ x M.

In the previous chapter, we proposed to use the SE kernel based on the affine-invariant
SPD distance (2.15) for GaBO on the SPD manifold. During the GP parameters
optimization in GaBO, the distances between each pair of SPD data only depend on
the data and are solely computed at the beginning of the optimization process. In
contrast, in HD-GaBO, the distances between the projected SPD data vary as a function
of W and therefore must be computed at each optimization step. This results in a
computationally expensive optimization of the mGP parameters. In order to alleviate
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this computational burden, we propose to use the SE kernel based on the Log-Euclidean
SPD distance dsi+ (X, X;) = ||log(X;) — log(X;)||r [Arsigny et al., 2006]. Moreover,
as shown in [Harandi et al., 2018], we can approximate log(WTXW) ~ W T log( X )W,
so that

dsiJr(WTXiW, WX, W)~ |[WT (log(X;) — log(X;)) W|[p. (8.11)

Therefore, the difference between the logarithm of SPD matrices is fixed throughout
the optimization process. This allows us to the optimize the mGP parameters at a
lower computational cost without affecting consequently the performance of HD-GaBO.
Note that the Log-Euclidean based SE kernel is positive definite for all the values of the
parameter 3 [Jayasumana et al., 2015].

In order to project the query point Z € Sf . back onto the original space Sﬂ,

to build an inverse projection mapping based on m. It can be easily observed that using

we propose

the pseudo-inverse W so that X = W' ZWT does not guarantee the recovered matrix
X to be positive definite. Therefore, we propose a novel inverse mapping inspired by
the nested sphere projections. To do so, we observe that an analogy can be drawn
between the mappings (8.6) and (8.10). Namely, the mapping (8.10) first consists of a
rotation R" X R of the data X € SJZ with R a rotation matrix whose D first columns
equal W, ie., R = (W V). Similarly to the nested sphere case, the rotated data
can be projected onto a subspace of the manifold 8f+ by fixing their last coordinates.
Therefore, the subspace is composed of matrices <W2)$W g), where B € Sf) :d is a
constant matrix. Finally, this subspace may be identified with Sf , by multiplying the
wTxXw C

c' B

projected matrix ( ) with a truncated identity matrix Iiune € RDx*d, Therefore,

the mapping (8.10) may be equivalently expressed as

Z=m(X)=1I1

trunc

T
(W;W g) Liyane = WTXW. (8.12)
From the properties of block matrices with positive block-diagonal elements, the projection
is positive definite if and only if WTXW > CBCT. This corresponds to defining the
side matrix as C' = (WTXW)%KB%, where K € R?>P~4 ig a contraction matrix, so
that || K|| < 1 [Bhatia, 2007]. Based on (8.12), the inverse mapping m~!: 8¢, — SP, is
given by

1 1

Z Z>KB:>

X=m'2)=R R, 8.13
m(2) <B§KTZ§ B ) (8.13)

with reconstruction parameters @, = {V, K, B}. The optimization (8.4) is thus carried
out on the product of manifolds Gp_qq x R¥P~4 x SP~4 subject to | K|| < 1 and
WTV = 0. The latter condition is necessary for R to be a valid rotation matrix. We
solve this optimization problem with the augmented Lagrangian method on Riemannian

manifolds introduced in [Liu and Boumal, 2019].
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8.3 Experiments

In this section, we first evaluate the performance of GaBO in a high-dimensional BO
setting using some high-dimensional benchmark test functions on the sphere and SPD
manifolds. Then, we test the proposed HD-GaBO framework to optimize functions lying
on a low-dimensional Riemannian manifold embedded in a high-dimensional space. Both
GaBO and HD-GaBO use the geodesic generalization of the SE kernel (7.4) and their
acquisition functions are optimized using trust region on Riemannian manifolds (see
Algorithm 5). The other state-of-the-art approaches use the classical SE kernel (2.52)
and the constrained acquisition functions are optimized using sequential least squares
programming [Kraft, 1988]. All the implementations are built on the Python libraries GPy-
Torch [Gardner et al., 2018], BoTorch [Balandat et al., 2019] and Pymanopt [Townsend
et al., 2016]. Here, all the tested methods use EI as acquisition function and are initialized
with 5 random samples.

8.3.1 Optimization of High-dimensional Objectives with GaBO

We use several benchmark functions to study the performance of GaBO in high dimensions
on the Riemannian manifolds S” and Sf .. As in the previous chapter, the test functions
are projected onto the manifolds. The search space corresponds to the complete manifold
for SP and to SPD matrices with eigenvalues A € [0.001, 5] for Sﬂ. We carry out the
optimization by running 30 trials with random initialization. The GP parameters are
selected using MLE.

In the case of SP, we compare GaBO against the classical BO (hereinafter called Euclidean
BO) and two high-dimensional BO approaches (namely, dropout BO [Li et al., 2017]
and SIR-BO [Zhang et al., 2019]), which carry out all the operations in the Euclidean
space. The dropout approach optimizes only a random subset of the dimensions at each
iteration. Therefore, it does not make any particular assumption on the objective function.
Moreover, it can be easily extended to a parameter space lying on a sphere by optimizing
the vector z composed of randomly selected dimensions of & with the constraint ||z|| < 1.
The remaining dimensions are then adapted so that the query point x satisfies ||| = 1.
As suggested in [Li et al., 2017], we implement dropout with a mixed fill-in strategy with
probability p = 0.1 of randomly choosing the value of the remaining dimensions. While
the SIR-BO approach follows the low-dimensional assumption, it has been shown to
perform well also in cases where the objective function lies in a high-dimensional space.
As in Euclidean BO, the acquisition function of SIR-BO is optimized in the Euclidean
space with the constraint ||| = 1 to ensure that the query points belong to SP. Other
approaches, such as the MGPC-BO of Moriconi et al. [2019], are not considered here due
to the difficulty of adapting when the parameters lie on Riemannian manifolds.
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We minimize the Ackley, Rosenbrock and Styblinski-Tang functions

1 & 1 &
fAckley () = —20 exp (—0.2 D ; xf) — exp (D ; cos(27ra:i)) + 20 + exp(1),

D-1

fRosenbrock(x) = Z (100(~75i+1 - $12)2 + (.7}1 - 1)2) ,
=1

1
5 ((smi)4 — 16(sz;)? + 5(s:ri)) with s = 3,
i=1

fStyblinski—Tang (x) =

for dimensionality D = {10, 50} to analyze the methods performance in spaces of different
high dimensions. The latent space dimensionality is fixed at d = 5 for dropout and
SIR-BO. Figure 8.3 displays the median and the first and third quartiles of the logarithm
of the simple regret along 300 BO iterations for the two aforementioned sphere manifolds
and three benchmark test functions. We observe that GaBO is competitive with respect to
the high-dimensional BO approaches for all the functions and the considered dimensions.
While GaBO initially shows a lower convergence rate than dropout and SIR-BO for the
Rosenbrock and Styblinski-Tang functions, it always converges to a better optimizer
and displays a lower variance than SIR-BO after 300 iterations. Moreover, GaBO also
converges to a lower final value with a lower convergence variance than dropout for the
functions in S?°. Note also that Euclidean BO shows a poor performance for all the
benchmark functions and both dimensions.

Regarding the manifold Sf .
SIR-BO (augmented with the constraint A\p;, > 0) and alternative implementations
of BO, dropout and SIR-BO (hereinafter called Cholesky BO, Cholesky dropout and
Cholesky SIR-BO) that exploit the Cholesky decomposition of an SPD matrix A = LLT.
This means that the resulting parameter is the vectorization of the lower triangular

we compare GaBO against the Euclidean BO and Euclidean

matrix L. Note that we do not consider here the Euclidean version of the dropout
method due to the difficulty of optimizing a subset of a SPD matrix while satisfying the
global constraint Ay, > 0. We minimize the Ackley, Rosenbrock and Styblinski-Tang
functions (s = 5) for dimensionality D = {5,10}, which correspond to optimizing 15
and 55 parameters, respectively. The dimension of the latent space is fixed at d = 3 for
dropout and SIR-BO.

Figure 8.4 displays the median and the first and third quartiles of the logarithm of the
simple regret along 300 BO iterations for the three benchmark test functions on the
SPD manifolds Si . and S}rg. We observe that, although it has not been specifically
designed for high-dimensional functions, GaBO outperforms all the geometry-unaware
BO methods for all the test cases: GaBO converges faster to a better optimizer than
all the other approaches. Moreover, GaBO displays a faster convergence rate than
all the other methods for the Rosenbrock and Styblinski-Tang functions. In the case
of the Ackley function in S?

2., the variance of GaBO is low above, but high below
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Figure 8.3 — Logarithm of the simple regret for high-dimensional benchmark test functions

in SP with d = {10,50} over 30 trials. The first and third quartiles are represented with
a light-color patch around the median line for the BO methods and the random search

baseline.
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Figure 8.4 — Logarithm of the simple regret for high-dimensional benchmark test functions
in 8P with D = {5,10} over 30 trials. The first and third quartiles are represented
with a light-color patch around the median line for the six BO methods and the random
search baseline for the Ackley and Rosenbrock functions. For a better visualization of
the Styblinski-Tang function, only the quartiles of GaBO and dropout BO are shown.

the median value, indicating that GaBO sometimes converges to an optimizer much
closer to the optimum than the median. Moreover, while the variance of GaBO is
higher than the other approaches for the Ackley function in Si(}r, GaBO is also the only
method whose optimizer is consequently lower than the initial values of the BO. In
particular, these results highlight the benefit of incorporating domain knowledge into
the BO framework and the importance of geometry-awareness for optimizing objective
functions on Riemannian manifolds. It is interesting to notice that, while dropout showed
good performance to optimize benchmark test functions on the sphere manifold, it is
competitive with GaBO only for the Styblinski-Tang function on the SPD manifold. This
may be attributed to the simpler geometry of the sphere manifold, which may be easier
to handle for geometry-unaware approaches compared to the more complex geometry of
the SPD manifold. Therefore, exploiting the geometry of the search space is even more

crucial when the space dimension is high.
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8.3.2 Optimization of High-dimensional Objectives with HD-GaBO

After studying the performance of GaBO for high-dimensional benchmark test functions
lying on a Riemannian manifold, we evaluate the proposed HD-GaBO framework to
optimize high-dimensional functions that lie on an intrinsic low-dimensional space. We
consider benchmark test functions defined on a low-dimensional manifold M¢ embedded
in a high-dimensional manifold MP. Therefore, the test functions are defined as f :
MP — R, so that y = f(m(x)) with m : MP — M¢? being the nested projection
mapping, as defined in Section 8.2.3. The projection mapping parameters are randomly
set for each trial. The search space corresponds to the complete manifold for S” and to
SPD matrices with eigenvalues A € [0.001, 5] for Sﬂr. We carry out the optimization by
running 30 trials with random initialization. The GP parameters are estimated using
MLE.

In the case of the sphere manifold S, we compare HD-GaBO against GaBO, the
Euclidean BO and three high-dimensional BO approaches, namely dropout BO [Li et al.,
2017], SIR-BO [Zhang et al., 2019], and REMBO [Wang et al., 2013]. For Euclidean BO,
dropout and SIR-BO, the query point is guaranteed to belong to the sphere as explained
in the previous experiment section. In the case of REMBO, the next query point is
given by @,41 = Az,41 with 2,41 € R? obtained by optimizing the acquisition function,
so that 2,41 = argmax, v, (2n+1; Dn) with the constraint ||Az| = 1, where A € RP*4
is the projection matrix used by REMBO. We minimize the Rosenbrock, Ackley, and
product-of-sines functions

d
foroduct-ot-sines (@) = 100sin(z1) [ [ sin(;),
i=1
defined on the low-dimensional manifold S® embedded in S°, i.e., d = 5 and D = 50.
Figure 8.5 displays the median of the logarithm of the simple regret along 300 BO
iterations (left graphs), and the median, with corresponding first and third quartiles
after 300 iterations (right graphs) for the three aforementioned benchmark functions. We
observe that HD-GaBO generally converges fast and provides good optimizers for all the
test cases. Moreover, it outperforms all the other BO methods for the product-of-sines
function: it provides fast convergence and better optimizer with low variance. In contrast,
SIR-BO, which leads to the best optimizer for the Rosenbrock function, performs poorly to
optimize the product-of-sines function. Similarly, dropout achieves a similar performance
as HD-GaBO for the Ackley function, but it is outperformed by HD-GaBO in the two
other test cases. Moreover, it is worth noticing that GaBO converges faster to the best
optimizer than the other approaches for the Ackley function and performs better than
all the geometry-unaware approaches for the product-of-sines function. This highlights
the importance of using geometry-aware approaches for optimizing objective functions
lying on Riemannian manifolds.
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Figure 8.5 — Logarithm of the simple regret for benchmark test functions in the nested
sphere manifold S® of S0 over 30 trials. The left graphs show the evolution of the
median for the six BO approaches and the random search baseline. The right graphs
display the distribution of the logarithm of the simple regret of the BO recommendation
x after 300 iterations. The boxes extend from the first to the third quartiles and the

median is represented by a horizontal line.
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Regarding the SPD manifold Sﬂ, we compare HD-GaBO against GaBO, the Euclidean
BO and SIR-BO, and the Cholesky-decomposition-based alternative implementations
of BO, dropout, SIR-BO and REMBO. Similarly to dropout, we do not consider the
Euclidean version of REMBO due to the difficulty of optimizing the acquisition function
in the latent space while satisfying the constraint Api, > 0 for the query point in the
high-dimensional manifold. We minimize the Rosenbrock, Styblinski-Tang (s = 5), and
product-of-sines functions defined on the low-dimensional manifold Si . embedded in
S}r?r, i.e., d =3 and D = 10. Figure 8.6 displays the median of the logarithm of the
simple regret along 300 BO iterations (left graphs) and the median of the logarithm of the
simple regret of the final recommendation Xy after 300 iterations, with corresponding
first and third quartiles (right graphs) for the three aforementioned benchmark test
functions. We observe that HD-GaBO consistently converges fast and provides good
optimizers for all the test cases. Moreover, it outperforms all the other approaches for the
Styblinski-Tang function, with faster convergence and a better optimizer. Similarly to
the sphere cases, some methods are still competitive with respect to HD-GaBO for some
of the test functions but perform poorly in other cases. For example, Cholesky dropout
shows a similar convergence as HD-GaBO for the Rosenbrock function, but its median
optimizer remains close to the initial values for the product-of-sines function. Inversely,
Cholesky SIR-BO performs well for the product-of-sines function, but poorly for the
Rosenbrock function. Furthermore, Cholesky BO converges fast to a good optimizer for
the product-of-sines function, but its median optimizers do not differ much from the initial
values for the other functions. Interestingly, GaBO performs well for both Rosenbrock
and Styblinski-Tang functions. Moreover, the Euclidean BO methods generally perform
poorly compared to their Cholesky equivalences, suggesting that, although they do
not account for the manifold geometry, Cholesky-based approaches provide a better
representation of the SPD parameter space than the Euclidean methods.

8.4 Conclusion

In this chapter, we evaluated the scalability of GaBO for seeking optimal parameters
for functions lying on high-dimensional Riemannian manifolds. Moreover, we proposed
HD-GaBO, a high-dimensional geometry-aware Bayesian optimization framework that
exploits nested structure-preserving mappings to optimize high-dimensional functions that
lie on a low-dimensional latent space. To do so, we used a geometry-aware GP that jointly
learned a nested mapping and a representation of the objective function in the latent space.
We also considered the geometry of the latent space while optimizing the acquisition
function and we took advantage of the nested mappings to determine the next query point
in the high-dimensional parameter space. Overall, our results highlight the relevance
of geometry-awareness to scale BO to parameter spaces lying on high-dimensional
Riemannian manifolds. GaBO was shown to be competitive with high-dimensional BO
methods on the sphere manifold and outperformed all the other approaches on the SPD
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Figure 8.6 — Logarithm of the simple regret for benchmark test functions in the nested
SPD manifold S_?; . of S}Lg over 30 trials. The left graphs show the evolution of the
median for the eight BO approaches and the random search baseline. The right graphs
display the distribution of the logarithm of the simple regret of the BO recommendation
x after 300 iterations. The boxes extend from the first to the third quartiles and the
median is represented by a horizontal line.
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manifold. In the case of high-dimensional functions with underlying low dimensionality,
HD-GaBO consistently performed well while optimizing various objective functions,
unlike state-of-the-art methods that are geometry-unaware.

A limitation of the proposed HD-GaBO framework is that it depends on nested mappings
that are specific to each Riemannian manifold. Therefore such mappings may not be
available for all the existing manifolds. Future work will explore how to overcome this
limitation. Moreover, we will evaluate the performance of HD-GaBO for optimizing
robotic parameters in complex learning scenarios, where geometry-awareness may be
relevant and objective functions may be better represented in an underlying latent space.
Potential scenarios include the optimization of manipulability ellipsoids in Sf . and the
optimization of stiffness and damping matrices for controlling both the position and the
orientation of the end-effector. From a broader point of view, HD-GaBO may also be
exploited to optimize unit-norm parameters and SPD descriptors in machine learning

applications, as well as covariance matrices of multivariate distributions.
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A Model-based Gaussian Process

In the Parts I, IT and III of this thesis, we proposed to introduce '
geometry-awareness into learning, control and optimization approaches

in order to handle parameters lying on Riemannian manifolds. We
showed that adding domain knowledge in the form of geometry- )
awareness into these different methods enhances robot learning, control '

and optimization capabilities. e

In the last Part of this thesis, we hypothesize that learning approaches can be enhanced
with the introduction of domain knowledge not only through geometry-awareness, but also
through structure-awareness. In the next chapter, structure-awareness is considered with
the incorporation of prior models into learning approaches, with the presentation of a novel
model-based Gaussian process approach.

/Publication note \

The material presented in this chapter is adapted from the following publication:

e Jaquier, N., Ginsbourger, D., and Calinon, S. (2019a). Learning from demon-
stration with model-based Gaussian process. In Conference on Robot Learning

(CoRL).

Supplementary material
A video illustrating the experiment presented in this chapter is available at:
https://sites.google.com/view/gmr-based-gp.

Source code
Source codes related to this chapter are available at:

\ https://github.com/NoemieJaquier/ GMRbased GP. /
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Chapter 9. A Model-based Gaussian Process

9.1 Introduction

In the previous chapters of this thesis, we provided different learning, control and
optimization frameworks with additional domain knowledge by including information
about the geometry of the data. This allowed us to design geometry-aware approaches,
adapted to variables lying on Riemannian manifolds. An other way to introduce domain
knowledge into learning methods is through prior models. In this chapter, we propose
to introduce a prior model into a non-parametric approach, namely a Gaussian process.
By doing so, the resulting approach possesses the advantage of the Gaussian process,
including data efficiency and the various advantages of generative models, combined with
interesting properties of the prior model, as explained in the following.

In the context of learning from demonstrations (LfD), robot motions can be generated
from demonstrated trajectories using various probabilistic methods, e.g. Gaussian mix-
ture regression (GMR) [Calinon, 2016], dynamical movement primitives (DMP) [Pastor
et al., 2009], probabilistic movement primitives (ProMP) [Paraschos et al., 2013] kernel-
ized movement primitives (KMP) [Huang et al., 2019] or Gaussian process regression
(GPR) [Schneider and Ertel, 2010]. The covariance matrices of the prediction distributions
computed by GMR, ProMPs and KMP encode the variability of the predicted trajectory.
This variability, reflecting the dispersion of the data collected during the demonstrations,
carries important information for the execution of the task. For example, the phases
of the task in which a high precision is required, e.g. picking an object in a specific
location, are characterized with a low variability, and vice-versa. During the reproduction,
the variability is typically used to define robot tracking precision gains and permits
the combination of different controllers [Silvério et al., 2018]. However, the approaches
encoding variability do not take into account the availability of data in the different
phases of the task. Inversely, the covariance matrices of the prediction distribution of
GPs correspond to the prediction uncertainty, which reflects the presence or absence of
training data in different phases of the task. This uncertainty measurement has been used,
for example, to modulate the behavior of the robot far from the training data [Silvério
et al., 2018] or to actively make requests for new demonstrations in unexplored regions
of the input space [Maeda et al., 2017].

In LfD, it is often desirable to precisely refine parts of the demonstrated trajectories
(e.g. due to changes in the environment), while maintaining the general trajectory shape
(mean and variability) as in the demonstrations. It is also desirable to adapt the behavior
of the robot, e.g. its compliance at different phases of the tasks, as a function of the
variability of the demonstrations or the presence of (un)certainty in the reproduction. As
none of the aforementioned methods provide both information features simultaneously,
several approaches have been developed to take into account prediction uncertainty and
variability. In [Schneider and Ertel, 2010], the reproduced trajectories are computed
as a product of the predictions of local GPs, obtained by clustering the input space
similarly to the approach of [Nguyen-Tuong et al., 2009]. Therefore, by adapting the
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parameters of each GP, the resulting uncertainty is adapted as a function of the variability
of the different phases of the demonstrations. In [Umlauft et al., 2017], the prediction
uncertainty and variability are inferred separately. The trajectories are predicted using
a combination of GP and dynamical movement primitives (DMP), therefore providing
uncertainty measurement. On the other hand, the variability in the reproduction is
determined by inferring the components of the corresponding covariance matrix with
GPs.

In this chapter, we propose an approach that aims at encapsulating the variability
information of the demonstrations in the prediction uncertainty. We take inspiration from
multi-output Gaussian processes (MOGPs) under the linear model of coregionalization
(LMC) assumption to design a non-stationary, multi-output kernel based on GMR. In
contrast with the aforementioned approaches, both variability and uncertainty information
are encoded in a single GP. Moreover, we define the prior mean of the process as equal to
the mean provided by GMR. This permits to ignore the training data in the generation
of new trajectories and to consider only via-points constraints as observed data, therefore
alleviating the computational cost of the GP. Moreover, setting the tracking precision as
a function of the retrieved covariance allows us to demand the robot to precisely track
the via-points while lowering the required tracking precision in regions of high variability.

The remainder of the chapter is organized as follows. While GMR and GPs were
introduced in the Background chapter (see Section 2.4), Section 9.2 provides a short
introduction to MOGPs. The proposed GMR-based GP is introduced in Section 9.3
and validated in a real-robot experiment in Section 9.4. Finally, Section 9.5 presents a
discussion on similarities and differences of the proposed approach compared to other
probabilistic methods, notably ProMP and KMP.

9.2 Background: Multi-output Gaussian Processes

Multi-output Gaussian processes (MOGPs) generalize GPs to vector-valued output
by predicting jointly the output components (see [Alvarez et al., 2012] for a review).
Therefore, MOGPs exploit the potential relation between the output components, which
are not taken into account if predictions are computed separately for each dimension.
Similarly to standard GP, the vector-valued objective function is modeled in MOGP with a
vector-valued Gaussian process GP(u, K), inducing finite-dimensional prior distributions
over potential objective functions, so that

f(:l?) ~ N(M(CC),K(%,CC)), (9'1>

with mean function g : X — RP and positive-definite kernel (or covariance function)
K : X x X — RP*P with D the output dimension.
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Given a set of N observed realizations {(z,, y,)}._,, the posterior distribution follows
by Gaussian conditioning

A

FI@)Azn yulniy ~ N(A7(2), 57 (2)), (9.2)
with conditional mean and covariance functions given by

A" (@) = p@) + K@) (K +3) 7" (y - ), (9.3)
SP(#) = K(3,%) - K(2)" (K +X.)' K(2), (9.4)
where vy is the vector composed of the concatenated observations, p is the vector composed
of concatenated means, K is the covariance matrix between the observations, i.e.,

Y1 u(wl) K(xl,K1> K(xl,acN)
Yy= y = and K = ) (9'5)
YN w(zxy) K(xy,K;1) ... K(xn,xN)

K (%) is a matrix of covariance terms between & and the observations x,, 3. is the
covariance matrix of the observation noise €, which is assumed centered Gaussian and
independent of the process. The covariance flp(:c) expresses the prediction uncertainty
for all components and between them. In typical cases, the further away the input data
lies from the training dataset the larger the prediction variance.

The class of covariance kernels that we consider in this chapter is formulated as a sum of
separable kernel functions generated under the linear model of coregionalization (LMC)
assumption [Goovaerts, 1997]. This class of kernel functions is often called separable
as the dependencies between inputs and outputs are decoupled. Therefore, the kernel
K(x;, x;) between two input vectors x; and x; is expressed as

Q
K (wi7 CBj) = Z quq ((12, ZB/) ’ (96)
g=1

where the so-called coregionalization matrices Y, € RP*XP are positive semi-definite
matrices representing the interaction among the output components. The choice of the
scalar-valued kernels k, and the design of the coregionalization matrices X, are crucial for
the GP as they represent our prior knowledge about the function that is being learned.

9.3 A Model-based Gaussian Process

In this section, we propose to combine GMR and GPR to form a GMR-based GP. The
proposed approach takes advantage of the ability of GPs to encode various prior beliefs
through the mean and kernel functions and allows the variability information retrieved
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by GMR to be encapsulated in the uncertainty estimated by the GP. Moreover, the
proposed approach enjoys the properties of generative models, therefore new trajectories
can be easily generated through sampling and conditioning.

9.3.1 GMR-based GPs Formulation

In order to avoid confusion, we denote in this chapter the mean of the GMR distribu-
tion (2.43) as M. Moreover, the componentwise covariances (2.46) are denoted as 33
for simplicity. We define the GMR-based GP as a GP with prior mean

p(x) = pM(x), (9.7)

and a kernel in the form of a sum of C' separable kernels associated with the C' components
of the considered GMM

C
K(zi,x;) =Y ho(@i)ho(z;) S0 k(i ;). (9.8)
(=1
The prior mean of Eq. (2.43) allows the GP to follow the GMR predictions far from
training data. Moreover, the constructed GP is also covariance non-stationary due
to its spatially-varying coregionalization matrices [Gelfand et al., 2004]. The input-
dependent coregionalization matrices hg(mi)hg(wj)flg corresponding to this conception
are determined by GMR (via (2.46), (2.47)). Alternatively, one can say that the GMR
responsabilities h; weight the importance of the kernels ky(x;, ;) according to the
proximity of the input data to the center of GMM components. Thus, the kernels
associated to the centers close to the given input data are more relevant than distant
centers. The covariance matrices 3, allows the dependencies between the output data to
be described for each GMM component. Note that both the coregionalization matrices and
the number of separable kernels are determined by GMR. Therefore, the only parameters
to determine are the hyperparameters of the kernels k, which can be estimated, for
example, by maximizing the likelihood of the GP. Moreover, the variance parameters o
of the kernels k, are fixed to 1 as they are already scaled by the covariance matrices 3.
Thus, the estimation of hyperparameters is simplified compared to standard LMC.

Figure 9.1a shows the prior mean and 10 sample trajectories generated from the proposed
GMR-based GP where ky are Matérn kernels (v = 5/2). The training data, consisting
of 5 demonstrations of a two-dimensional time-driven trajectory, are identical to the
training data of Figures 2.4 and 2.5. The GMR-based GP is based on a 6-component
GMM (see Figure 2.4a). The hyperparameters of the model, namely the lengthscales
oy of the ky and the covariance of the noise ¥ = o I, were optimized by maximum
likelihood estimation within the GPy framework [GPy, 2012]. Note that the prior mean
of the process corresponds to the mean obtained by GMR in Figure 2.4b. Moreover,
the prior uncertainty provided by the GMR-based GP is lower in the regions where the
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Figure 9.1 — Illustration of GMR-based GP on a two-dimensional time-driven trajectory.
(a) Sample trajectories generated from GMR-based GP. The prior mean of the process and
the sample trajectories are represented by continuous blue and purple lines, respectively.
The covariance K K of the process is represented by a light purple tube around the prior
mean. (b) Sample and predicted trajectories generated from the posterior distribution of
the GMR-based GP. The prior, sampled and predicted trajectories are represented by
continuous blue, dark pink and red lines, respectively. The uncertainty of the prediction
is represented by a light red tube around the predicted mean. Via-points, considered as
observations for the GMR-based GP, are represented by black dots. The trajectories are
extrapolated from training data for ¢ > 2.

variability of the demonstrations is low, e.g. at the bottom of the straight vertical line of
the B letter, and higher in the regions of higher variability, e.g. in the curves in the right
part of the B.

9.3.2 GMR-based GPs Properties

A particularity of the presented GMR-based GP is that the information on the demon-
strations distribution is included in the prior mean p(x) and covariance K (x,x) after
determining the hyperparameters. Therefore, the training data can be ignored and our
model can be conditioned uniquely on new observations. Figure 9.2a shows the mean
and uncertainty recovered by a 1D-output GMR-based GP without any observation. The
process was constructed based on a GMM with two components with k, defined as Matérn
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kernels (v = 5/2). The lengthscale parameters o; of the k; and the covariance of the noise
of the process o, are fixed as equal to 1 and le™%, respectively. Note that the distribution
corresponds to the prior of the GMR-based GP, therefore the mean is exactly equal to
the mean computed by GMR. Moreover, if a component ¢ is entirely responsible for a
test datapoint so that hy = 1, the corresponding uncertainty is equal to the conditional
covariance of the component )N augmented with o, as observed for t < 0.6 and ¢t > 1.8
in Figure 9.2a. In the case where several components are responsible for the datapoint,
its uncertainty is a weighted sum of the conditional covariances, as observed for the zone
in between the two GMM components. Therefore, the prior uncertainty obtained by
GMR-based GP without observation reflects the variability provided by GMR. However,
note that the prior uncertainty of GMR-based GP is not equal to =M,

In the cases where it is desirable to adapt trajectories towards new start-, via- or end-
points (&, (), those particular points are used to define a new set of V' observation
with inputs and outputs {(zy, ¥y)}rey = {(&s, o)}y which is then used to infer the
posterior distribution of the GMR-based GP with (9.2). Figures 9.2b and 9.2c show
examples where 2 and 3, via-points were added to the trajectory. We observe that the
mean of the process goes through the via-points and the uncertainty becomes very small
in these locations. Note that conditioning a trajectory towards via-points with GMR
alone is not straightforward due to the fact that covariance terms between two datapoints
are equal to zero.

As in a standard GP, the predicted mean and uncertainty depend strongly on the kernel
parameters. In Figure 9.2d, the lengthscale parameters of the kernels ky have been reduced
to o7 = 0.1. We observe that the uncertainty remains low in a small neighborhood around
the via-points but increases rapidly further from them. Moreover, one of the advantages of
the GMR-based GP is that each kernel ky can be chosen individually and their parameters
are determined separately. Therefore, different behaviors can be obtained as a function of
the location in the input space, as shown by Figure 9.2e where the lengthscale parameters
of the kernels corresponding to the left and right GMM component are equal to 0.1 and
5, respectively. Similarly to a standard GP, the noise of the process determines the
behavior of the GMR-based GP at the via-points location. As shown by Figure 9.2f
where 0. = 0.1, the constraint of passing exactly through the via-points is alleviated and
the mean of the GMR-based GP passes close-by the via-points while the uncertainty
is equal to the noise of the process. Note that the noise parameter can also be defined
separately for each kernel k.

Figure 9.1b shows the predicted mean and corresponding uncertainty as well as three
trajectories sampled from the posterior distribution of the GMR-based GP on the
B trajectory. As explained previously, the initial demonstrations data were used for
hyperparameters estimation but not incorporated as conditioning data and three via-
points have been added as new observations. We observe that the estimate and the
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Figure 9.2 — Illustration of the properties of GMR-based GP on time-driven 1D-trajectories.
The trajectories are predicted by GMR-based GP. The process was constructed based on
a 2-component GMM, represented by blue ellipses. The estimate of GMR-based GPR
is shown by a red continuous line with the corresponding uncertainty represented by a
light tube around the mean. The initial observations are discarded after determining the
hyperparameters. The lenghtscale parameters and noise covariance are fixed as o3 = 1
and o, = le™*, respectively. (a) The posterior distribution without any new observation
is represented. (b-c) Two, respectively 3, via-points, represented with black dots, are
added as observations of the GMR-based GP. (d) The lengthscale parameters are changed
to o; = 0.1, therefore modifying the evolution of the uncertainty around the observations
compared to b-c. (e) The lengthscale parameters are fixed as o; = 0.1, o7 = 5 for the left
and right GMM component, respectively. (f) The noise covariance of the process is fixed
as 0 =0.1 (o7 =1).
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Figure 9.3 — Demonstrations of the peg-in-hole task are provided via kinesthetic teaching.
The user guides the robot, which holds the peg in its gripper, to approach a hollow
cylinder, position the peg above the hole to prepare the insertion and insert the peg. The
blue hollow cylinder is placed 20 cm above the table for the demonstrations.

posterior trajectories are adapted to pass close to the via-points. In the zones far from
the via-points, the predicted trajectory follows the prior mean of the process.

9.4 Experiments

In this section, we evaluate the proposed approach in a peg-in-hole task achieved by the
7-DoF Franka Emika Panda robot. In the first part of the experiment, 3 demonstrations
of the task were collected by kinesthetically guiding the robot to first approach a hollow
cylinder and then insert the peg in it (see Figure 9.3). For all the demonstrations,
the hollow cylinder was placed 20 cm above the table. The collected data, encoding
time ¢ and Cartesian position (y1,y2,y3)", were time-aligned. We trained a GMM and
determined the hyperparameters of a GMR-based GP, as well as a MOGP with the
separable kernel (9.6) (Q = C) based on the time-driven demonstrated trajectories.
Matérn kernels (v = 5/2) were chosen as individual kernels k; and k, for the GMR-based
GP and MOGP, respectively. The number of components of the GMM (C' = 4) was
selected by the experimenter. Figure 9.4a shows the demonstrated trajectories and
corresponding GMM states.

In the second part of the experiment, an obstacle was added in between the initial position
of the robot and the hollow cylinder. Moreover, the hollow cylinder was positioned directly
on the table, i.e. 20 cm below its location during the demonstrations. Via-points were
determined by the experimenter to modulate trajectories so that the robot avoids the
obstacle in the desired manner and its final position corresponds to the new location of
the hollow cylinder. The performances of the proposed GMR-based GP, the MOGP and
GMR to reproduce the task in the modified environment were compared.

As explained in the previous section, the via-points were used to define a new set of
observations for the GMR-based GP, while the original training data are discarded after
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inferring the hyperparameters. In the case of the MOGP, the mean and uncertainty
of the reproduction considering V via-points are updated for each testing input « by
conditioning the distribution (9.2) on the desired via-points. The mean and variability
of the reproduction obtained by GMR can be updated in a similar way. However, as
the covariances between different datapoints are not encoded in GMR, the generated
trajectory is discontinuous. Therefore, we did not reproduce it with the robot and we
show instead in the following graphs the GMR reproduction where no via-points are
considered, whose mean corresponds to the prior mean of the GMR-based GP.

The task was reproduced using a linear quadratic regulator (LQR) controller tracking the
trajectory predicted by GMR-based GPR, MOGP or GMR [Calinon, 2016]. The required
tracking precision was set as proportional to the inverse of the posterior covariance $ of
the different methods. This information is exploited to demand a high precision tracking
in the regions of the trajectories where high certainty (GMR-based GP and MOGP) or
low variability (GMR) are observed, and vice-versa.

Figure 9.5 shows snapshots of the robot reproducing the peg-in-hole task using the
proposed GMR-based GP (top row) and the MOGP (bottom row). We observe that the
robot is able to circumvent the obstacle with both methods. However, the peg insertion
fails when the MOGP is used, as the peg is located in front of the cylinder at the end
of the trajectory. This is due to the fact that the trajectory generated by the MOGP
straightly links the two zones characterized with via-points, while the GMR-based GP
trajectory tends to follow the prior mean defined by GMR in between the two zones, as
shown in Figure 9.4b-bottom. This behavior allows the robot to position the peg above
the hole before approaching the cylinder and perform the insertion as demonstrated in the
first phase of the experiment. Inversely, by using the MOGP, the robot approaches the
hollow cylinder from the side, and therefore is unable to insert the peg. These different
behaviors are illustrated in Figure 9.6, where the 3D trajectories reproduced with the
different methods are represented. In order for the MOGP to successfully reproduce the
insertion, a supplementary via-point could be added prior to the insertion. However, this
supplementary via-point is not needed by the GMR-based GP thanks to its prior mean.

Moreover, as shown in Figure 9.4b-bottom, the uncertainty computed by the MOGP is
low along the whole trajectory, resulting in a rigid behavior of the robot for the whole
reproduction. In contrast, the GMR-based GP ensures a high tracking precision in the
two parts of the trajectory characterized by the via-points, while the robot can be more
compliant elsewhere depending on the variability encoded by the GMR, notably at the
beginning of the reproduced trajectory.

Table 9.1 gives the computation time for one test data with the training data of the 3
demonstrations with a non-optimized Python code on a laptop with 2.7GHz CPU and 32
GB of RAM. We observe that GMR-based GP is slightly more computationally expensive
than GMR and MOGP. However, this remains reasonable for our real-time experiment.
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Figure 9.4 — Demonstrations and reproductions of the peg-in-hole task. (a) Demonstrated
trajectories (in light gray) and corresponding GMM (C = 4) represented as blue ellipses.
The Cartesian positions y1, ¥2, y3, considered as outputs, are represented as a function of
the time, considered as input. (b) Reproduced trajectories. The means of the trajectories
generated by GMR-based GP, MOGP and GMR are represented by red, yellow and blue
lines, respectively, with their respective covariance depicted by light tubes around the
estimates. The via-points defined to modulate the trajectories generated by GMR-based
GP and MOGP are depicted with black dots.
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Figure 9.5 — Snapshots of the robot reproducing the peg-in-hole task using GMR-based
GP (top row) and MOGP (bottom row). Both methods allow the robot to circumvent
the obstacle. However, the peg is successfully inserted in the hole with the GMR-based
GP, while the robot fails to insert the peg with MOGP (observe that the blue hollow
cylinder is behind the peg at the end of the trajectory).
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Figure 9.6 — 3D representation of the trajectories followed by the robot in the reproduction
of the peg-in-hole task. The demonstrations are depicted in light gray. The trajectories
reproduced with GMR-based GP, MOGP and GMR are represented in red, yellow and
blue, respectively. The beginnings of the demonstrated and reproduced trajectories are
depicted by stars. The obstacle added in the reproduction phase is represented as a
brown parallelepiped. While both GMR-based GP and MOGP trajectories allow the
robot to circumvent the obstacle, the insertion of the peg in the hollow cylinder fails in
the MOGP case as the robot approaches the hollow cylinder from its side.

Table 9.1 — Computation time of GMR, MOGP and GMR-based GP for one test data in
the real robot experiment. All the time values are given in milliseconds [ms].

GMR | MOGP | GMR-based GP
1+£01|4+£06 13+1

9.5 Discussion

By defining a prior mean as GMR and by encapsulating the variability of the demonstra-
tion in its uncertainty, the proposed GMR-based GP allows efficient reproductions of
tasks learned by demonstration while adapting the learned trajectories towards new start-,
via- or end-points. We discuss here similarities and differences between the proposed
approach and other algorithms widely used to learn trajectories.

As briefly mentioned in the previous section, adapting trajectories with GMR is difficult
as conditioning on via-points results in discontinuous trajectories and re-optimizing the
underlying GMM to fulfill via-points constraints is not straightforward. In contrast, the
trajectories can be easily adapted to go through start-, via- or end-points by conditioning
on the desired observations in the case of GP and ProMP. Trajectories can also be adapted
using DMP. However, DMP does not handle variation and uncertainty information. More-
over, as DMP and ProMP encode trajectories by relying on basis functions equally spaced
in time, selecting appropriate basis functions becomes difficult with high-dimensional
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inputs. In contrast, kernel methods and GMR, for which GMM learns the organization of
basis functions, generalize well to high-dimensional inputs. By using GP, the trajectories
are modeled without considering the correlations between the output components. This
problem can be alleviated by replacing GP by MOGP. Notice that the computational
complexity of testing for the proposed GMR-based GP is importantly reduced compared
to MOGP, as the set of observations used in the testing part is only composed of desired
via-points, therefore resulting in a computational complexity of O(V2D?) instead of
O(N?D?), with D the output dimension and V < N.

Figure 9.7 shows an example of modulated trajectories recovered by ProMP, KMP and
GMR-based GP. The training data, consisting of 5 demonstrations of a two-dimensional
time-driven trajectory, are identical to the training data of Figures 2.4, 2.5 and 9.1.
As in Figure 9.1b, via-points are represented by black dots. ProMP is evaluated with
20 Gaussian basis functions, while both KMP and GMR-based GP are based on the
6-component GMM of Figure 2.4a. As expected the three methods are able to generate
trajectories passing through the via-points.

Overall, KMP shares strong similarities with the proposed GMR-based GP. Both ap-
proaches are kernel-based and can therefore cope with high-dimensional inputs. Moreover,
both make use of GMR, to retrieve a reference trajectory in the case of KMP and to
define the prior mean as well as kernel parameters for GMR-based GP. The reference
trajectory of KMP and the prior mean of GMR-based GP are depicted by a light blue line
in the example of Figure 9.7. Notice that both are identical. Therefore, the correlations
between the output components are taken into account in both models and they predict
full covariances for inferred outputs. Note that both approaches can make use of other
algorithms than GMR to capture the distribution of the demonstrations.

Compared to KMP which can be related to kernel regression, the framework of GMR-
based GP allows the representation of more complex behaviors, notably by defining priors
for the process. Our approach benefits of the properties of generative models, allowing
sampling of new trajectories from prior and posterior models (as shown in Fig. 9.1b),
and is highly flexible due to the kernels k; that can be chosen individually, resulting in
different behaviors of the model in the different regions of the input space. Moreover,
GMR-based GP provide an uncertainty information encapsulating the variability in the
variance parameter of the kernel, while KMP introduces the measure of the variability of
the demonstrations as the covariance matrix of the observation noise (see also Figure 9.2
compared to Figure 9.2). As a consequence, for the example of a robot tracking via-points,
KMP will adapt the distribution according to the covariance, representing the variability
of the demonstrations, given initially by GMR. In contrast, our approach allows us to set
via-points that the robot is required to track precisely, where the covariance tends to zero
due to GP properties. This is relevant for the case in which controller gains are set as a
function of the observed covariance, as we can ensure high precision due to close-to-zero
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Figure 9.7 — Comparison of the predicted trajectories generated by (a) ProMP, (b) KMP
and (¢) GMR-based GP with three via-points. The mean is represented by a continuous
line and the variance by a light tube around the estimate. Via-points are represented by
black dots. The mean of the trajectories recovered from the demonstrations (without
via-points) are depicted by blue lines.

Figure 9.8 — Example of time-driven 1D-trajectory predicted by KMP with three via-
points. The reference trajectory of KMP is based on the 2-component GMM of Fig. 9.2a,
represented by blue ellipses. The lengthscale parameter of the Gaussian kernel is fixed as
o; = 1. The via-points are represented with black dots.

prediction variances. In general, the tracking precision can be set independently from
the prior model with GMR-based GP (see Figures 9.2c, 9.2f).

9.6 Conclusion

This chapter presented a new class of multi-output GP with non-stationary prior mean and
kernel based on GMR. Incorporating the GMR prior model into the GP allows the resulting
approach to benefit from the properties of both GMR and GPs. Notably, our approach
inherits of the properties of generative models and benefits of the expressiveness and
versatility of GPs. Moreover, within this framework, the variability of the demonstrations
is encapsulated in the prediction uncertainty of the designed GP. Correlations between
the different output components are taken into account by the model. Moreover, the
proposed method takes advantage of the prior model, obtained from the demonstrations,
for trajectory modulation, considering only via-points constraints as observed data to
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generate new trajectories. Therefore, incorporating the given prior into the GP reduces
its computational load by not requiring to store all datapoints. Moreover, by doing so,
our framework allows a precise tracking of via-points while the compliance of the robot
can be adapted as a function of the variability of the demonstrations in other parts of
the trajectories.

Extensions of this work will investigate more in details the properties and limits of the
proposed approach. Moreover, we plan thorough comparisons between GMR-based GP
and other approaches of interest, such as KMP. Finally, the proposed approach may
also be considered in an active learning framework, where new datapoints are queried in
regions of high uncertainty.
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Ill] Exploiting Tensor Structures in a
Mixture of Experts

The Part IV of this thesis proposes to introduce domain knowledge into
learning approaches in the form of structure-awareness. In the previous
chapter, we presented a model-based Gaussian process, illustrating the
benefits of incorporating structure-awareness into a non-parametric
approach through prior models.

In this chapter, we focus on applications where a particular structure is intrinsically present
in the data. More specifically, we introduce a mixture-of-experts model adapted to data
organized in the form of matrices or tensors.

/Publication note \

The material presented in this chapter is adapted from the following publications:

e Jaquier, N., Connan, M., Castellini, C., and Calinon, S. (2017). Combining elec-
tromyography and tactile myography to improve hand and wrist activity detection
in prostheses. Technologies, 5(4);

e Jaquier, N., Haschke, R., and Calinon, S. (2020a). Tensor-variate mixture of ex-
perts for proportional myographic control of a robotic hand. Submitted to Robotics
and Autonomous Systems, Available as arXiv:1902.11104.

Supplementary material
A video related to this chapter is available at:
https://sites.google.com/view/tensor-mixture-of-experts.

Source code
Source codes related to this chapter are available at:
https://github.com/NoemieJaquier/TME.

The dataset related to the experiment presented in Section 10.4.3 is available at:

\ http://www.idiap.ch/paper/mdpi/data/exp2/. /
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Chapter 10. Exploiting Tensor Structures in a Mixture of Experts

10.1 Introduction

In this thesis, we formerly investigated two different approaches to include additional
domain knowledge into learning algorithms. The main part of the thesis proposed to
design geometry-aware approaches by introducing information about the geometry of
the data into the models. Moreover, in the previous chapter, we proposed a novel
model-based Gaussian process, showing that structure can also be incorporated into
learning approaches in the form of prior models. In this chapter, we focus again on data
properties. Motivated by the problem of recognizing hand movements from a matrix
of tactile sensors, we propose to investigate models adapted to matrix and tensor data.
We denote these approaches as structure-aware, in the sense that it takes the intrinsic
structure of the data into account.

In the context of prosthetic hands, tactile myography (TMG) has recently been proposed
as a complementary or alternative approach to the traditional surface electromyography
(sEMG) to achieve simultaneous and proportional control of multiples degrees of freedom
(DOFs) of a hand prosthesis (see, e.g., [Phillips and Craelius, 2005; Koiva et al., 2015]).
In this context, the aim of TMG is to measure the pressure related to the deformation
induced by the muscles activity of the forearm. This signal is then used to determine
the corresponding hand and wrist movements. The TMG sensor, developed in [Koiva
et al., 2015] and displayed in Figure 10.1, is composed of 320 resistive taxels organized
in a 8 x 40 array forming a bracelet. Therefore, the data provided by the sensor are
intrinsically matrix-valued. Previous studies showed that ridge regression (RR) directly
applied to the data of the bracelet allows the prediction of different finger and wrist
movements [Koéiva et al., 2015], which could outperform detection using sEMG [Nissler
et al., 2017]. However, RR does not take into account the matrix structure of the TMG
data as they are vectorized before the application of the regression method. Also, despite
our data may contain patterns that could be treated by deep learning strategies such as
convolutional neural networks, the use of such approaches would require large training
datasets to be efficient, which does not fit with the requirement of our application,
targeting personalized calibration of prosthetic hands from small datasets. Therefore, in
this chapter, we hypothesize that taking the intrinsic matrix structure of the data into
account in the regression process may lead to improved performance to recognize hand
movements based on TMG data.

Tactile myography is not the only example where data collected in robotics are naturally
represented as matrices or tensors. Examples also include images and video streams [Zhao
et al., 2014], as well as electroencephalography (EEG) data [Miwakeichi et al., 2004;
Washizawa et al., 2010]. Most approaches described in the literature consist of reorganizing
the elements of these tensors into vectors before applying learning algorithms based
on linear algebra operating on vector spaces. This flattening operation ignores the
underlying structure of the original data. Moreover, the dimensionality of the resulting
problem dramatically increases, creating high computational and memory requirements.
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Finally, the number of model parameters to estimate in the learning method may become
high, which constitutes an important issue in the cases where only few training data are
available.

With the burst of multidimensional data available in various fields of research, important
efforts were turned toward extending standard dimensionality reduction and learning
techniques to tensor data. In this context, Zare et al. [2018] proposed a review of tensor
decomposition methods by dividing them into three categories of problems usually targeted
by principal component analysis (PCA), namely low-rank tensor approximation, low-rank
tensor recovery, and feature extraction. In particular, multilinear PCA (MPCA) [Lu
et al., 2008] and weighted MPCA [Washizawa et al., 2010] were proposed to extract
features from tensor objects as a preprocessing step for classification. Similarly, linear
discriminant analysis was extended to multilinear discriminant analysis in [Tao et al.,
2007] and factor analysis was adapted to tensor data in [Tang et al., 2013]. In the
context of regression, Guo et al. [2012] proposed generalizations of ridge regression
(RR) and support-vector regression (SVR) methods to tensor data, where they showed
the superiority of tensor-based algorithms over the vector-based algorithms in various
applications. A similar extension of RR to tensor data was proposed in [Zhou et al.,
2013] with an application in magnetic resonance imaging (MRI). Following a similar
process, tensor-variate logistic regression (LR) was proposed in [Hung and Wang, 2013;
Tan et al., 2013] for the classification of multidimensional data. Moreover, kernel-based
frameworks such as Gaussian processes (GPs) [Zhao et al., 2014] were also adapted to
tensors [Signoretto et al., 2011].

In this chapter, we introduce a tensor-variate-mixture-of-experts (TME) model for
regression. Mixture of experts (ME) models, first introduced by Jacobs et al. [1991],
combine the predictions of several experts based on their probability of being active in
a given region of the input space. Each expert acts as a regression function, while a
gate determines the regions of the input space where each expert is trustworthy. The
output of the model is a weighted sum of the experts predictions. Over the years, ME
models were widely improved with different gates, regression and classification models
for the experts (see [Yuksel et al., 2012] for a review of applications). Notably, for wrist
movements recognition based on electromyographic (EMG) signals, the ME model with
linear experts can achieve similar performance as more complex nonlinear methods, at a
lower computational cost [Hahne et al., 2014].

In order to handle tensor data in a ME model, we propose to use tensor-variate models
for both the experts and the gates. In Section 10.3, we show that the experts can be
defined as tensor linear models and that the gates can be set as tensor-variate softmax
functions. Both elements are based on the inner product between the input tensor data
and model parameters (see Section 10.2). The resulting TME model is trained with an
EM algorithm using the CANDECOMP /PARAFAC (CP) decomposition, also called
canonical polyadic decomposition [Carroll and Chang, 1970; Harshman, 1970].
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Figure 10.1 — TMG sensor used for the experiments. The bracelet is here rolled out,
showing its 10 modules of 8 x 4 resistive cells.

The functionality of the proposed approach is first evaluated and compared to the
corresponding vector-based approach using artificially generated data (Sections 10.4.1,
10.4.2). The effectiveness of our approach is tested in an offline experiment with the aim
of detecting finger and wrist movements from TMG data (Section 10.4.3). We show that
the TME model outperforms the standard ME model and achieves similar performance
as a GP at a lower computational cost, with the advantage of being easily interpretable
due to the tensor structure. We finally validate the use of the proposed approach in
a real-time teleoperation experiment, where participants controlled a robotic arm and
hand by moving their wrist and closing/opening their hand (Section 10.4.4).

10.2 Background: Linear Models For Tensors

We introduce here the tensor decomposition necessary for the proposed TME, as well as
the extensions of two forms of the generalized linear model, namely ridge regression and
logistic regression, to tensor-variate data. Note that the basic tensor operations used in
this chapter were introduced in Chapter 2.3.

10.2.1 Tensor Rank and CANDECOMP/PARAFAC Decomposition

Tensor rank

A rank-one tensor Y of order M is a tensor that can be written as the outer product of

M vectors, i.e.,
Y=uDou?o.  ou, (10.1)

In general, the smallest number of rank-one tensors that generate a tensor Y as their
sum is defined as the rank R of the tensor Y. Therefore, a rank-R tensor can be written

as a sum of R rank-one tensors, i.e.,
Y= ulouPo.. oul. (10.2)
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The CANDECOMP /PARAFAC decomposition

The CANDECOMP/PARAFAC (CP) decomposition, also called canonical polyadic
decomposition, [Harshman, 1970; Carroll and Chang, 1970] factorizes a tensor Y €
R I2xXIM a9 5 sum of R rank-one tensors, i.e.,

R
Y~ Zug) ouPo..  ouM, (10.3)
r=1

The CP decomposition can also be expressed in terms of the m-mode matricization and
vectorization of the tensor Y(,,) and vec(Y) as

Y,y ~ UMU T, (10.4)
vee(Y) ~ (UM o ... 0 UM)1g, (10.5)

where ® denotes the Khatri-Rao product (2.23), U™ € RIm*R are factor matrices
defined as

U™ = [u™ W), (10.6)
v = wMe. . oumeoum e, . oUub), (10.7)

and 1z € R is a vector containing R ones.

If Y follows exactly a CP decomposition (10.3), the inner product (2.24) can equivalently
be written as

<X7y> - <X(m)v U(m)U(_m)T> = <X(m)U(_m)7 U(m)>a (10'8>

by exploiting (10.4) and the properties of the Frobenius norm and matrix trace.

10.2.2 Generalized Linear Model for Tensors
Given a vector-valued input data x, the generalized linear model (GLM) is given by
y=flx'w+b) = f({z,w) +b), (10.9)

where y is the predicted output, w is a vector of weights, b is the bias and f(-) is a
function, see Figure 10.2a. This model can be naturally extended to matrix-valued data
X with

y= f(w(l)TXw(2) +b)
= (X, wMow®) 1), (10.10)
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where w® and w® are vectors of weights. Following a similar procedure, the model
can be generalized to M-dimensional tensor-valued data with

y=rf((xwWo. ow)tp), (10.11)

as shown in Figure 10.2b. The key advantages of this representation, compared to
vector-valued representation y = f(vec(X)Tw + b), are that the underlying structure
of the tensor-valued data is taken into account in the model and that the number of
parameters is reduced from Hnj‘le I, to Z%[:l I,,. Moreover, more complex features can
be represented by encoding the weight tensor as a sum of R rank-one tensors with

R
y:f<<x,2w,€1)o...ow,£M)>+b>. (10.12)
r=1

This model is represented in Figure 10.2c.

Similarly to the vector case, we obtain the tensor-valued linear and logistic regression

models by defining the function f(-) as identity and as the softmax function, respectively.

10.2.3 Tensor Ridge Regression (TRR)

Given a vector-valued input data x, the classical regression model is of the form
y=ax'w+b+e=(x,w)+b+e, (10.13)

where y is the predicted output, w is a vector of weights, b is the bias and € is a zero-mean
Gaussian noise variable. Following (10.12), and as shown in [Guo et al., 2012; Zhou et al.,
2013], the model can be generalized to M-dimensional tensor-valued data

R
y:(X,Zwﬁl)o...owﬁM) )+b+e
r=1
=(X,W)+b+e, (10.14)
therefore taking the underlying structure of the data into account.

Given a dataset of M-dimensional tensor inputs and corresponding outputs { X, yn}nNzl,
the parameters of the tensor ridge regression (TRR) model (10.14) are learned by
maximizing its likelihood, or equivalently its corresponding log-likelihood

N
(W, b,0) = ZlogN(yn‘<Xn,W>+b, 02>, (10.15)
n=1

where ¢? is the variance of the zero-mean Gaussian random variable e. By using
the inner product equality (10.8), one can observe that the model (10.14) is linear in
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Figure 10.2 — Illustrations of generalized linear models (GLM). (a) GLM for vector-valued
data. The data and model parameters are depicted in blue and orange, respectively.
(b)-(c) Extensions of GLM to tensor-valued data. The representation of (¢) allows the
encoding of more complex behaviors as the weight tensor is encoded as a sum of rank-1
tensors.
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wm) = [wgm) . wg;im)] individually, so that the parameters

{W(l),...,W(M),b} can be learned by optimizing a sequence of generalized linear
models (see [Guo et al., 2012; Zhou et al., 2013] for details). Therefore, by adding to the
log-likelihood function a zero-mean Gaussian prior on the weight tensor, equivalent to
the regularization term —X\yy SM_, |[W ™) ||2 the bias b and factor matrices W (™) are
updated at each iteration until convergence with

vec(W™)  «—  (87® + MyI) '@ T (y —b1), (10.16)
1 N

T n - XTLy P 11

b an::ly (X, W) (10.17)

where the n-th row of the matrix ® is equal to vec (Xn’(m)W(_m)), the n-th element of

the vector y is y,, 1 € RY is a vector of N ones and || - ||p is the Frobenius norm. Note
that other types of regularization are also proposed in [Guo et al., 2012].

10.2.4 Tensor Logistic Regression (TLR)

In the classical multi-class logistic regression model, the posterior probability of the class
C; is given by the softmax function

exp(zTv; + a;)
chzl exp(xTv; + a;)’

p(Cilx, 0) = (10.18)

where 6 denotes the parameters of the model and C the number of classes. Similarly as
ridge regression, the logistic regression model can be extended to tensor-valued data by
encoding the tensor of weights as a sum of R rank-one tensors, leading to the tensor-valued
softmax function [Hung and Wang, 2013; Tan et al., 2013]

exp ((X, Vi) + a,-)

’/Tz:p«:'z‘xve): c
> 1 exp <<X,Vj> +aj)

: (10.19)

where V; = 1, 'v;lr) 0...0 vﬁ\f[). Similarly to TRR, the tensor logistic regression (TLR)

model takes into account the underlying structure of the data and reduces the number of
parameters in the model compared to a vector-based representation of the tensor-valued
data.

Given a dataset of inputs and corresponding unit vector outputs {X,, yn}ﬁyzl, where
yn,; = 1 indicates that the n-th data belong to the i-th class, the log-likelihood of the
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multivariate tensor logistic regression model is

N C
5({\%,@@}2@;1) = log H H ¥

n=1i=1

_Z (Zyn( (X0, Vi +az) logzexp( Xn, Vi +al)>. (10.20)

n=1

Note that a regularization term —\y >%, S M ||Vz(m)|]% can be added to the log-
likelihood function to avoid overfitting. The parameters {Vi(l), 1- aZ} ~, can be
learned by minimizing the negative log-likelihood of the model via any gradient-based
optimizer, e.g., Newton’s method or limited memory BFGS. By exploiting (10.8), the
gradients of the regularized negative log-likelihood used in the optimization process can

be computed as

( ({vuaz}z 1 )
6V

N
Z Tnyi — Yn,i)vee( X, 7(m)V;(_m))

+ 2 Ay vee(V,™), (10.21)

( ({vuaz}z 1 )
oa;

ﬂ—nz ynz (1022)

an

where 7, ; = p(Ci| Xy, 0).

10.3 Tensor-variate Mixture of Experts

A mixture of experts (ME) regression model [Jacobs et al., 1991] aims at solving a
nonlinear supervised learning problem by combining the predictions of a set of experts.
The model is composed of a gate determining a soft division of the input space, and
several experts making predictions in the different regions of the input space. In this
section, we propose to generalize the ME regression model to tensor-variate data by using
tensor-variate models for the experts and for the gate.

10.3.1 TME Model

Given a tensor-variate input X and an output y, the tensor-variate mixture distribution
is

Q

(y|X,0) Zp i| X, 8,) p(yli, X, 6.), (10.23)
=1

s

where C' is the number of experts, p(i|X, 8,) is the probability of the i-th expert to be
activated (gate’s rating) and p(yli, X, 0.) is the model of the i-th expert. We define
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0 = {6,,0.}, where 8, and 6. denote the parameters of the gate and the set of experts,
respectively.

Similarly to the original ME model, we define the gate of the TME model by the
tensor-variate softmax function, so that

p(i|X,0,) = m, (10.24)

with 7; defined by (10.19), V; = 25:91 ’vl(’lr) 0...0 'vgi\q/[) and R, the rank of the weight
tensors V;. The experts follow the Gaussian model

Py, 2,0 = N ([, (X) + bi. %), (10.25)
(X Wi1) R
where 9;(X) = : Wia=>,24 wg,ld)’T 0...0 wz(glz and R, is the rank of the
< Xvwi,D >

weight tensors W; 4. Note that one weight tensor W; 4 is defined for each element of
y € RP. This is similar to the vector case, where different vectors w; weight the input

-
wp

w]
for each element of the output, so that y = ( : ) z+b.

Figure 10.3 illustrates the proposed model. Single predictions are computed by using the
expectation of the TME model (10.23), so that

C
§=> m(pi(X)+by). (10.26)
i=1

10.3.2 Training of TME

Similarly to ME, the TME model can be trained using the expectation-maximization
(EM) algorithm. By introducing a set of binary latent variables {z,} where z,; =1
indicate that the data n was generated by the i-th mixture component, the expected
complete data log-likelihood is given by

N C
n=11i=1

where 7, ; denotes the responsibility of the i-th component for the n-th data point so
that r,; = p(2n; = 1|&,,, 0). In the E-step, the responsibilities r,, ; are computed using

i N(yn"zpz(é\f'n) + b;, 21)
chzl 7Tn,j N(yn ’(pj(Xn) + bj, Ej) ‘

(10.28)

rn,i =
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Figure 10.3 — Proposed TME model. The gate is represented in the green box and the
experts are represented in orange boxes.

In the M-step, the parameters are updated to maximize the expected complete data
log-likelihood (10.27). First, the parameters of the experts 6, are updated iteratively
until convergence, based on (10.16) and (10.17), with

vee(Wp)) e (81,850 + D) ST, (5 — bial), (10.29)
1 Y -
b N Un,d — (Xn, i,d /s 10.
2 T = (. Wi (10.30)

where the n-th row of the matrix @i,d is equal to

Vec(Xm(m) VVZ-(’d_m)>, the n-th element of the vector ¢ is , 4 and X, = VTkXn, Un =
VTnkYn are the scaled input tensors and output vectors, respectively. The covariance of
the experts Gaussian model is then updated as

SN T (yn —Pi(Xn) — bi>T (yn —i(Xn) — bi)

N
n=1"Tn

¥ (10.31)

Finally, the gate parameters 8, are updated by maximizing the log-likelihood of the
multivariate tensor logistic regression model

N C 4 cC M
(({viary) =log [T [T m = 2w 32 D IV™ I3,

n=14i=1 i=1m=1

(10.32)

based on (10.20). Similarly to tensor logistic regression, a gradient-based optimizer is
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used to minimize the negative log-likelihood with gradients given by (10.21) and (10.22),
where y,, ; is replaced by 7, ;.

Note that regularization terms have been added in the M-step to avoid overfitting. The
E-step and M-step are iterated until convergence of the algorithm.

10.3.3 Model Selection and Initialization

Selecting the number of experts in ME is known to be a difficult problem [Yuksel
et al., 2012]. When the structure of the application allows it, as in the experiments of
Section 10.4, the number of experts can be determined by the experimenter. Otherwise,
standard strategies used for ME, such as exhaustive search, growing or pruning models,
or Bayesian estimates can be adapted to TME.

The TME model assumes fixed ranks R, and R,, for the gate and experts weight tensors,
respectively. The appropriate rank can be estimated using cross-validation or through
usual model selection criterion, e.g., the Bayesian information criterion (BIC).

Previous works on TRR [Guo et al., 2012; Zhou et al., 2013] and TLR [Tan et al., 2013]
showed that both TRR and TLR models converge to a similar solution independently
of the initial weight values. Therefore, the weight tensors of TME are initialized with
random values in our experiments. In order to facilitate the convergence, we initialized
the weights of the expert model W; and of the gate V; as equal to the weights W
obtained from TRR.

10.4 Experiments

In this section, we first evaluate the functionality and the performance of the proposed
TME on artificially generated data. The approach is then applied to the detection
and recognition of hand movements from tactile myography (TMG) data. An offline
experiment and a real-time teleoperation experiment, where participants controlled a
robotic arm and hand based on their hand movements, illustrate the effectiveness of the
proposed TME model.

10.4.1 2D Shape Example

In this illustrative example, we propose to evaluate the performance of the proposed
TME model for different ranks under various sample sizes and signal strengths. To do so,
we generate artificial data following the model (10.23) from known parameters 8 and we
evaluate the recovery of these parameters by the model. In this illustrative example, we
consider matrix-variate inputs X € R4*64 whose elements are independent and normally
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distributed. The output y is normally distributed with a mean given by a 2-class TME
model with zero biases

exp ((X,V)) 1
<X,W1> +
1+ exp ((X,V)) 1+ exp ((X,V))

9= (X, Wa), (10.33)

and a standard deviation 0. The weight matrices V., Wi, Wy € R64%64 are equal to
the binary 2D shapes represented in Figure 10.4a, where the black and white regions
correspond to 1 and 0, respectively. The use of these 2D shapes was inspired by the
illustrative example presented in [Zhou et al., 2013].

We first examine the performance of the proposed TME model for ranks R4 and R, =
R, = R., varying from 1 to 3 with a sample size N = 1000 equally divided between the
two classes and a noise level o equal to 10% of the standard deviation of the mean g.
The regularization terms Ay and Ay were fixed as equal to 0.1. Moreover, we compare
the TME model with the standard ME regression model whose gate is defined by the
softmax function (10.18) and experts follow a Gaussian model with a mean given by
(10.13).

Figure 10.4 shows the original and recovered weight matrices by the ME and TME models
along with the root-mean-square error (RMSE) for the estimation of the weight matrices
and the BIC value for TME. We observe that TME outperforms ME for all the tested
rank values as the maximum RMSE value achieved by TME is 0.21 (R, = 1, R. = 3)
versus 0.3 for the ME model. Moreover, we observe that the weight matrices retrieved by
ME are noisier and the shapes of the experts weights are not clearly delimited and tend
to be fused together compared to those retrieved by TME. Similar results were obtained
for different sample sizes and noise levels.

Similar observations can also be made by comparing the weight matrices retrieved by RR
and MRR for the same data, as shown in Figure 10.5. Although both methods retrieve
one weight matrix fusing the three original ones due to their formulation, the weight
matrix retrieved by RR looks noisier than the one retrieved by MRR. This confirms that
taking the structure of the data into account improves the quality of the recovered weight
matrices.

Due to their structure, a rank-2 setting is sufficient to capture a cross or a T-shape
pattern, while a low rank setting does not allow to exactly represent a disk shape. As
expected, the cross and T-shape are fully recovered by TME in the cases where R, > 2
and R, > 2, respectively, while approximations of the shapes are obtained for lower ranks
(see Figures 10.4c—10.4f). Moreover, while the disk shape is approximated by a square
in a rank-1 setting (Figure 10.4c), it is already fairly recovered by a rank-2 or rank-3
setting (see Figures 10.4d-10.4f).
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(a) (d) () (f)
(2,1) (1,2) (2,2) (3,3)
RMSE 0.30 0.16 0.18 0.12 0.18
BIC - 10209 8940 9835 11216

Figure 10.4 — (a) True weight matrices of the gate and experts functions (from top to
bottom: V', W1 and Ws). (b) Recovered weight matrices by ME. (c¢-f) Recovered weight
matrices by TME for different ranks (Ry, R.).

Figure 10.5 — Recovered weight matrix by RR and MRR.
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Figure 10.6 — (a) Evolution of the RMSE of the estimation of TME weight matrices in
function of the sample size N for different noise levels. The curves corresponding to noise
levels o equal to 1, 10 and 50% of the standard deviation of the mean ¢ are represented
in dark blue, red and yellow, respectively. The mean and two standard deviations over 10
trials with different matrix-variate inputs X are represented. The sample size is equally
divided between the two classes. (b) Recovered weight matrices V', Wy and Wy by TME
for ranks R, = R, = 2 with, from left to right, sample sizes N = 500, 2000 and 2000 and
noise levels o = 1%, 1% and 50% of 4.

Consistently with the aforementioned observations, the minimum RMSE value is obtained
by TME with a rank-(2, 2) setting. Moreover, TME with ranks R, = R. = 3 obtains a
slightly higher RMSE than with ranks Ry = R, = 2. This can be explained by the fact
that approximating the cross and t-shape with a rank-3 setting, while a rank-2 setting is
sufficient, leads to an overfitted estimation with a higher influence of the noise contained
in the training data. According to the BIC values reported for the tested TME models,
the model with R, = 1 and R, = 2 should be selected (lowest BIC cost). However, in
practice, one may prefer the rank-(2,2) setting in this case, suggesting that other rank
selection methods, such as cross-validation, may be used in function of the application.
Note that similar observations were made for different sample sizes and noise levels.

As shown in Figure 10.6, the estimation accuracy increases with the sample size and
decreases with the noise level o, validating the consistency of the proposed method.

10.4.2 Shape Example of Higher Dimensions

In order to evaluate the performance of the proposed TME model for higher tensor
dimensions, we extended the experiment to tensor-variate inputs X of order 3 and 4.
The dimension of the inputs and coefficients was reduced from 64 to 16 in order to
allow the comparison with ME. Indeed, the number of elements of a third-order cube
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Figure 10.7 — Evolution of the RMSE in function of the dimension of the data for the
estimation of the weight tensors by ME and TME, depicted in dark blue and yellow,
respectively. The mean and two standard deviations over 10 trials with different inputs
are represented.

tensor of dimension 64 is 262144. Therefore, with a standard implementation of ME,
262144 x 262144 matrices need to be stored and inverted, which cannot be handled in a
straightforward manner with a standard computer. Note that other techniques, notably
sparse methods, could be used to handle such a case. However, as this is out of the scope
of this chapter, we simply reduced the dimension of our coefficients.

For this second illustrative example, the tensor-variate inputs X € R16>X:-x16 and the
outputs y were generated as in the previous experiment, with tensor coefficients instead of
matrices in (10.33). The weight tensors V, Wi and Wy € R16*-X16 were defined as 2D,
3D and 4D binary coefficients with shapes similar to the ones represented in Figure 10.4a
extended to higher dimensions. For this experiment, the background and shape regions
correspond to 0 and 1. We compared the performances of ME with the proposed TME
model with ranks Ry, = R, = 2 with a sample size N = 200 equally divided between the
two classes and a noise level o equal to 10% of the standard deviation of the mean .
The regularization terms Ay and Ay were fixed as equal to 0.1.

Figure 10.7 shows the mean and two standard deviations of the RMSE obtained for the
estimation of the weight tensors by ME and TME for different dimensions. Note that no
result is presented for ME with coefficients of dimension 4 due to the computational load
of storing and inverting 65536 x 65536 matrices. We observe that TME outperforms ME
for all dimensions. Moreover, the RMSE explodes for ME with dimension 3 as it almost
reaches the maximum RMSE of 1, while it grows slowly for TME from dimensions 2 to
4. Considering that the number of training data was constant and that the number of
elements of the coefficients grew considerably with the number of dimensions, this result
highlights the benefits of TME (and of considering tensor-based approaches).
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10.4.3 Detection of Hand Movements from Tactile Myography

As mentionned previously, previous studies showed that ridge regression (RR) directly
applied to the data of the bracelet allows the prediction of different finger and wrist
movements. However, RR does not take into account the matrix structure of the TMG
data as they are vectorized before the application of the regression method. Moreover,
the same weight vectors are used independently of the activated movements, which may
result in false positive detection of activations. Therefore, the motivations to use TME
for this application are the following: () the structure of the data is taken into account in
the regression process; (i) the problem is decomposed in two subparts, namely detecting
which movements are activated and determining their individual level of activation; and
(i77) the low computational complexity to evaluate one test sample allows TME to be
used for real-time detection of hand and wrist movements from TMG data.

In this experiment, we investigate the performance of TME to recognize different finger
and wrist movements offline. The dataset was gathered from 9 healthy participants
requested to replicate the movements of a stimulus in the form of a 9-DOF hand model
while wearing the tactile bracelet (see Figure 10.8). Ground truth was obtained from the
values of the animated hand model displayed on a monitor. This method has the drawback
of possibly reducing the precision of the prediction of the intended activations due to the
delay required by the participant to replicate the displayed movement. However, this
approach has been widely used in the literature [Nielsen et al., 2011; Sierra Gonzalez
and Castellini, 2013] as it allows the association of intended activations with input signal
patterns in the case of amputees (since ground truth data can obviously not be collected
by other means in this case). Each participant executed three times a sequence of six
movements, namely wrist flexion, wrist extension, wrist supination, thumb flexion, index
flexion and little-finger flexion. Each stimulus followed a cycle of 20 s, consisting of a
transition phase (5 s), an activation phase (6 s), a transition phase (5 s) and a relaxing
phase (4 s). Data were recorded during the whole cycle in order to obtain the whole range
of activation from rest to complete finger and wrist movements. Data acquired from the
tactile bracelet and the visual stimulus were synchronized by linearly interpolating the
samples of each channel. TMG data were low-pass filtered (first-order Butterworth filter
with cut-off frequency of 1 Hz) to remove high-frequency disturbances.

The training dataset is composed of data recorded at zero and full activation. The testing
dataset is composed of data recorded during the transition parts, containing the whole
range of intermediate activation levels. Therefore, the evaluation of the performance of
the model is compatible with the evaluation in forecasted studies with amputees, as they
cannot provide accurate intermediate training data.

We compared the performance of vector-based and tensor-based algorithms on this
dataset, namely RR, ME, TRR and TME. We also contrasted the results of these
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Figure 10.8 — Data collection setup for the detection of hand movements from TMG. The
participant, wearing the tactile bracelet, imitates the gray animated hand model.

(mixtures of) linear models with a computationally more involved nonlinear method
based on Gaussian process regression (GPR).

The TMG data were centered for all the methods. The regularization parameter of
RR and ME were fixed to 0.1. GPR was used with a radial basis function (RBF)
kernel whose parameters were optimized using GPy [GPy, 2012]. The rank of TRR was
determined using 5-fold cross-validation and the regularization parameter Ay was fixed
to 0.1. For TME, as for ME, one expert was considered for each of the six finger and wrist
movements. In order to facilitate the training process, we considered a common value R,
for the ranks R.,. The ranks R, and R, were determined using 5-fold cross-validation for
2 < Ry, R, < 6. The regularization parameters of TME, Ay and Ay, were fixed by the
experimenter as equal to 0.1. We noticed that small variations of these regularization
parameters did not change significantly the results for the different regression methods.

Table 10.1 shows the mean and standard deviation over the 9 participants of the RMSE
between the ground truth and the prediction for the aforementioned methods. We observe
that taking into account the structure of the data in the regression process improves
the quality of predictions as both TRR and TME outperform their vector counterparts.
More surprisingly, taking into account the structure of the data allows a linear method
(TRR) to achieve performance comparable to those obtained by a nonlinear method. GP
and TME achieve the best performance compared to the other methods, with the TME
approach with linear models obtaining only a slightly lower RMSE (0.303 4 0.074) than
the nonlinear GP (0.305 + 0.060).! Moreover, TME obtained the minimum RMSE for 5
participants out of 9.

Figure 10.9 shows an example for GP and TME of the original and recovered activations
for all movements over time. We observe that TME is generally recovering a more stable
signal than GP when one movement is not activated. In the regions of zero activations,
the signal recovered by GP tends to oscillate around zero. However, the signal recovered

!'Note that GP with RBF kernel slightly outperformed GP with linear (0.455 & 0.061), Matérn 32
(0.308 + 0.061) and Matérn 52 (0.306 £ 0.059) kernels, therefore all the results are presented with RBF
kernel.

210



10.4. Experiments

Table 10.1 — Performance comparison in terms of RMSE between different regression
methods to predict fingers and wrist movements from TMG data.

RR ME GP TRR TME
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Figure 10.9 — Original and recovered activations of the different fingers and wrist move-
ments over time. The whole range of activation is represented from 0 to 1 on the vertical
axis for each movement. The ground truth is shown by black curves, while the signals
recovered by TME and GP are displayed in yellow and purple, respectively.

by TME can have a bigger delay than GP to detect an activation different than zero (see,
e.g., Fig. 10.9, wrist extension).

Table 10.2 shows the average testing computation time for the tested regression methods.
The computation times were measured using a non-optimized Python code on a laptop
with 2.7GHz CPU and 32 GB of RAM.We observe a testing time of 1 ms for TME, which
is reasonable for real-time applications allowing predictions at a frequency > 50 Hz, as
usually targeted by real-time detection of hand movements. Importantly, as opposed to
GP, the computation testing time of TME is independent of the number of training data
and depends only on the number of experts. Therefore, TME can be adapted to real-time
predictions independently on the number of provided training data. During training,
TME converged with less than 10 iterations of the EM algorithm for all the participants,
with a total training time of several minutes. This is mainly due to the fact that a
TLR model is optimized at each step of the EM algorithm. While the training time of
TME could be easily improved by using dedicated tensor libraries such as [Kossaifi et al.,
2019], and despite we used a naive implementation in our experiments, the training time
remained reasonable for the method to be applied in real-time, as we show in the next
subsection.
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Table 10.2 — Average testing computation time for the different regression methods. The
methods are trained on ~ 1000 data samples. The testing computation time is measured
for one data sample.

RR ME | GP | TRR | TME
Testing [ms] | 0.0065 | 0.08 | 1.5 | 0.035 | 1.0

10.4.4 Real-time Teleoperation with Tactile Myography

To evaluate our method in a scenario closer to the end-user case, we conducted a real-time
teleoperation experiment in which 11 non-amputated participants (one female and ten
males) controlled a robotic hand and arm based on the activation of the muscles on their
forearm.

In the first part of the experiment, a protocol similar to the data collection of the
experiment of Section 10.4.3 was applied to collect TMG data associated with the hand
postures of the participants. The tactile bracelet was placed on the forearm of the
participants with the closing gap on the ulna bone. The participants, wearing the tactile
bracelet and sitting in front of a monitor, were asked to replicate the movements of a
model of the 24-DOFs dexterous motor hand of the Shadow Robot Company [Shadow
robot company, 1997]. Similarly to the previous experiment, ground truth was obtained
from the values of the animated hand model. Each participant executed four times the
sequence of four movements, namely wrist flexion, wrist extension, power grasp and
fingers extension. The participants were asked to perform the different movements in
a relaxed way (particularly, the fingers were relaxed during wrist movements). Each
stimulus follows a cycle of 14 s composed of a transition phase (2 s), an activation phase
(6 s), a transition phase (2 s) and a relaxing phase (4 s). The data collected during the
activation and relaxing phases, i.e., at zero and full activations, were used to train the
regression models.

During the second part of the experiment, the participants teleoperated a Shadow robot
hand mounted on a 7-DOFs Mitsubishi PA10 robot arm. They were sitting in front of
the robotic system with the palm of the Shadow robot hand facing right, as showed in
Figure 10.10a. The different movements taught to the model in the first part of the
experiments were mapped to the robotic system as follows: wrist flexion and extension
were used to move the arm forward (in the direction of the palm) and backward (in
the direction of the back of the hand), respectively. Power grasp and fingers extension
were used to close and open the Shadow robot hand. When wrist flexion or extension
was detected above a certain activation threshold, the velocity of the robot arm was
incremented in the corresponding direction proportionally to the detected activation.
Similarly, the posture of the robotic hand was incremented proportionally to the activation
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of power grasp or fingers extension if they were detected above a predefined threshold.
The detected activations were also displayed on the Shadow robot hand model as in the
first part of the experiment.

At the beginning of the second part of the experiment, the participants could get used to
the learned mapping by controlling the simulated Shadow robot hand for a few minutes.
Then, while teleoperating the real robotic system, the participants were asked to control
the arm in order to approach it close to an object placed on a cube, to grasp this object
and to bring it to a specific location on the left (A) or on the right (B) side and to
release it. The complete setup is shown in Figure 10.10a. Three objects with different
diameters were considered, namely a chips cylinder (@75 mm), a thin woodstick (221
mm) and a PET bottle (63 mm), as shown in Figure 10.10b. A total of 8 tasks were
executed by each participant. The first six tasks consisted of bringing each object to
A and then to B. Once a contact with the object was detected by the tactile fingertip
sensors of the Shadow robot hand, the grasp pose was automatically maintained by the
hand so that the participants could relax their fingers and focus on the wrist motion to
steer the arm. The grasp pose was released as soon as a fingers extension command was
detected. The maintenance of the grasp and the release were announced verbally by the
system. The two last tasks consisted of bringing the PET bottle to A and to B without
any holding assistance by the robot system. The time to complete each task was limited
to two minutes. In case the object felt from the cube or was released out of the desired
area, the experimenter replaced it at the initial position and the participant continued to
execute the task in the remaining time. In case the participants could not control both
the arm and the hand, e.g., if the arm was drifting continuously in one direction, the arm
commands were disabled and the participants were requested to maintain a grasp on the
object for 10 s before releasing it. Each participant tried to complete the 8 tasks with
two different regression methods, namely TME and RR, trained on the data collected in
the first part of the experiment. RR was chosen for comparison since it is considered as
the baseline method for regression with TMG data. The order in which the two methods
were tested was alternated between the participants.

Figure 10.11 shows snapshots of a participant executing different tasks. 6, respectively 7,
out of the 11 participants were able to control both the arm and the hand during the
whole experiment by using TME and RR, respectively. Note that the cases during which
the arm commands had to be disabled occurred mainly for the second tested method (4
participants out of 5 testing TME as second method and 3 out of 4 participants testing
RR as second method), suggesting a decrease of performance over time. One participant
was not able to control both arm and hands for both methods and an other participant
was able to control them for the 4 first tasks of the first tested method only.

The success rates, or ratios of successful tasks, for the case in which the participants
controlled both robot arm and hand are presented in Table 10.3. We observe that TME
outperformed the performance RR by 15% when all the objects and both locations A
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Figure 10.10 — (a) Setup of the teleoperation experiment. The participant is requested
to grasp the chips cylinder and to place it on A or B. The distance between the initial
position of the object and A or B is approximately 15 cm. The detected activations
are displayed on the monitor by an animated hand model. (b) Objects used during the
teleoperation experiment.

and B are considered. The time needed to accomplish successful tasks were 55.6 £ 31.1 s
and 53.9 + 31.5 s for TME and RR, respectively, showing almost no difference between
the two methods.

For both methods, the tasks involving the woodstick result in the lowest success rate.
Due to the small diameter of this object, the arm had to be positioned very precisely
and a complete grasp activation had to be detected in order to perform a successful
grasp. Therefore, the tasks involving the woodstick were the hardest to complete for
the participants. In the case of TME, the success rate for the chips cylinder is lower
than for the PET bottle. This can be explained by the fact that a small activation of
the grasp movement was sometimes detected when the participants were flexing their
wrist to make the arm move in the direction of the object. However, the robotic hand
had to be completely opened to be able to be placed around the chips cylinder before
grasping, while it could still be placed around the bottle if a small grasping activation
was detected. In the case of RR, the success rate diminishes for the bottle compared to
the chips cylinder. This may suggest a stronger decrease of performance over time with
this method.

We observe that the success rates for the bottle are similar with and without the holding
assistance activated for both methods. This result is particularly interesting as it shows
that combinations of hand and wrist movements in this experiment, namely grasping
with wrist flexion, and grasping with wrist extension, can be detected while training only
on individual movements. Moreover, both aforementioned combinations were equally
detected as the number of completed tasks for each location A or B was similar, i.e., 4
and 3 successful tasks for A and B with TME and 2 for each location with RR. Moreover,
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(b) Bringing the bottle to B

.

(¢) Reaching A while holding the bottle (d) Releasing the chips cylinder at B

Figure 10.11 — Snapshots of the teleoperation experiment for different tasks. The detected
activations are displayed by a Shadow robot hand model on the monitor.

some of the participant did not wait that the contact with the object was detected before
bringing it to its final location. Therefore, they managed to complete other tasks without
using the holding assistance.

Table 10.4 shows the proportion of the failed tasks for which the time ran out during
each of the task steps, namely grasping, moving and releasing the object, for TME and
RR. We observe that the proportions are similar for both methods with the grasping step
being the main cause of failure, followed by the moving step. Failures during grasping
occurred mainly because the detected grasp activation was not sufficient to grasp the
object or when it was activated too soon, therefore resulting in the object being pushed
out of the support box. Failures while moving were due to difficulties to detect wrist
flexion and extension or to the object falling down while the participant was trying to
reach A or B. Finally, if the fingers extension movement was not detected properly while
the holding assistance was activated, the opening of the hand was not triggered, resulting
in failure to release the object.

The success rates for the case in which the arm commands where disabled and the
participant was only requested to grasp the object are presented in Table 10.5. In this
case, RR outperforms TME, especially for the tasks involving the woodstick. This can be
explained by the fact that, in most of the cases, the arm commands had to be disabled for
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Table 10.3 — Success rates over all the tasks and for each object in the case where the
participants teleoperated both the robot arm and hand. The success rates are given in
percent [%)].

Total | Chips cylinder | Woodstick | Bottle | Bottle (no HA)
TME | 45.8 41.7 16.7 66.7 58.3
RR | 30.6 44.4 12.5 35.7 28.6

Table 10.4 — Proportion of the failed tasks due to running out of time during the grasp,
the displacement and the release of the object [%)].

Grasping | Moving | Releasing
TME 57.7 30.8 11.5
RR 58.1 32.6 9.3

RR because the arm was drifting on the left or on the right, while it had to be disabled
for TME because no activation was detected to move the arm, so that the participant
could not position it to grasp the object. Generally, the detected activation of the grasp
movement was also limited, therefore some tasks were difficult to achieve, especially those
involving the woodstick.

10.5 Discussion

The proposed TME model allows the structure of tensor-valued data to be taken into
account in the regression problem. Overfitting can then be reduced, which is particularly
important when only few tensor-valued training data are available. We showed the
effectiveness of the approach to detect hand movements from TMG data, outperforming
the other tested methods in an offline experiment and allowing participants to teleoperate
a robotic arm and hand in real-time. Particularly, the method was able to successfully
detect intermediate and combination of activation, while trained only with zero and
complete individual movements. Notably, participants managed to activate wrist flexion
or extension along with power grasp. This indicates that a holding assistance may not be
required. However, some participants reported that the holding assistance was helpful as
a feedback indicating that the grasp was effective or to make them feel more comfortable
while teleoperating the arm, as they could focus on one movement only.

A decrease of performance over time, indicated by the necessity of deactivating the arm
commands while testing the second method, seemed to have occurred during the real-time
experiment. Moreover, some participants reported that they felt that the control of
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Table 10.5 — Success rates over all the tasks and for each object, for the case in which
the commands of the arm had to be disabled. The success rates are given in percent [%].

Total | Chips cylinder | Woodstick | Bottle | Bottle (no HA)
TME | 38.8 40.0 0 40.0 40.0
RR | 53.8 50.0 66.7 50.0 50.0

the robotic arm and hand was harder to perform over time. Moreover, we qualitatively
observed that this problem seemed to occur particularly for participants who were trying
to apply high forces to execute the different movements. We hypothesize that this is due
to small displacements of the TMG bracelet over time, inducing a shift of the testing
data compared to the training data. This problem could be overcome by improving the
placement of the bracelet and by adapting the model over time. Techniques such as
covariate shift adaptation in the case of SEMG [Vidovic et al., 2016] could be investigated.

It is important to emphasize the fact that the participants were able to adapt in some
extent to the predictions of the method. They slightly modified their hand movements
in order to obtain the desired action of the robotic arm and hand. Therefore, we observe
a form of active learning, where the method learned from the training data, while the
participants learned from the method in order to achieve the desired performance.

In both experiments, the ranks of the experts were given by a common value. The
performance of TME may be further improved by selecting a specific rank for each expert.
However, to avoid increasing computation time, automatic rank selection procedures have
to be investigated. In particular, the automatic rank selection presented in [Guo et al.,
2012] could be exploited to determine the rank of the expert models. The suggested
method uses a /1 2 norm regularization and optimizes the model with iteratively reweighted
least squares (IRLS) algorithm. This approach seems promising as the authors reported
in their experiments that the automatic procedure provided the same rank as the one
selected by cross-validation.

10.6 Conclusion

This chapter presented an extension of mixture of experts to tensor-valued data. Our
method brings together the advantages and robustness of mixture models and tensor
methods. Therefore, it allows an efficiently combination of predictions from experts
specialized in different regions of the input space, while taking into account the structure
of tensor-valued data in the soft space division and in the predictions of the experts.
By incorporating information on their structure in the model, the data are efficiently
exploited, so that a model trained with a small amount of training data is able to achieve

217



Chapter 10. Exploiting Tensor Structures in a Mixture of Experts

a good performance, while overcoming the overfitting problem. This is particularly
important in robotics as the amount of training data is often small compared to the
dimensionality of the data. The effectiveness of our model was illustrated with artificially
generated data and in two experiments aiming at detecting hand movements by measuring
the pressure induced by the muscles activity of the forearm with tactile myography. We
showed that the testing computational time of the proposed model is low, due to a
computational cost independent of the number of training data, therefore making it
compatible with real-time robotic applications.

The proposed TME model could be improved by investigating automatic rank selection
procedures with the objective of automatically determining all the ranks of the model,
therefore avoiding the use of cross-validation in the training process. Moreover, extensions
of the proposed TME model could be studied for other applications in robotics. Notably,
TME could be extended to more complex models, such as hierarchical TME [Yuksel
et al., 2012]. It is worth noting that the proposed TME model permits to incorporate
structural information of the data as a special case of neural network. Extensions of
this model could then also lead to interesting perspectives in the development of neural
network structures for tensor data that would have better interpretability, that could be
trained with small amount of data, and that would provide better generalization results
by avoiding overfitting.
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This thesis proposed to include domain knowledge into robot learning, control, and
optimization algorithms in order to enhance robot learning and control capabilities. In
the three first parts of this thesis, we exploited Riemannian manifolds theory in order
to design geometry-aware learning, control and optimization approaches that efficiently
consider the geometry of non-Euclidean parameter spaces, which are ubiquitous in
robotics. In the last part, we considered the introduction of domain knowledge from
a broader perspective and showed that learning approaches can benefit from being
structure-aware, where the structure may come either from prior models or from being
intrinsically contained in the data. While individual conclusions were drawn for each
of the approaches presented in this manuscript, this final chapter aims at highlighting
general observations that can be drawn from the proposed models and solutions described
throughout the thesis. We then conclude with a discussion on future research directions.

11.1 Conclusions

In Part I, we complemented the LfD paradigm to encode and retrieve data in the form
of SPD matrices. By being geometry-aware, the proposed GMM/GMR framework
considers meaningful relationships between the data and guarantees the generation of
outputs belonging to the desired manifold. In addition, the proposed approach can be
straightforwardly used to learn trajectories combining data on several manifolds. For
example, the position, orientation and manipulability ellipsoids of a robot during a
manipulation task can be jointly learned from demonstrations by considering the product
of manifolds R? x 83 x Sfi ++ Moreover, the same state variables can easily be encoded for
multiple arms systems by considering their shared manipulability, e.g., we may consider
the product R3x 83 x R3 x 83 x 89 for a dual-arm manipulation task. It is worth noticing
that, in contrast to state-of-the-art approaches, the proposed approach automatically
encodes and retrieves full SPD matrices, i.e., including off-diagonals elements. This
opens the door to learning complex robot behaviors, e.g., by considering full controller
gains matrices instead of diagonal ones or by learning complete manipulability ellipsoids
instead of optimizing only the determinant or condition number of these matrices.

The Part II of this thesis focused on a specific category of SPD matrices, namely
manipulability ellipsoids. After learning sequences of manipulability in Part I, we
exploited Riemannian manifold theory and tensor representations to build manipulability
tracking controllers, allowing to reproduce the learned SPD trajectories. Compared to
the state-of-the-art manipulability-based optimization schemes, our approach allows the
reproduction of any manipulability ellipsoid in an exponentially-stable manner. Based
on the aforementioned manipulability learning and tracking frameworks, we presented
a complete manipulability transfer framework that enabled the learning of posture-
dependent task requirements. The presented approach provided a skill transfer strategy
between agents of different embodiments going beyond the imitation of trajectory, force
of impedance behaviors.
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In Part III, we proposed GaBO, a geometry-aware Bayesian optimization that exploits
the geometry of the search space to refine, adapt and optimize parameters lying on
Riemannian manifolds. We showed that providing BO with information about the
geometry of the parameters leads to faster convergence, better accuracy and lower
solution variance compared to geometry-unaware BO implementations. We showed that
these findings remain valid and are even accentuated when the dimension of the search
space increases, as GaBO even outperforms high-dimensional BO approaches. Finally, we
proposed a high-dimension GaBO framework based on the low-dimensional assumption,
scaling GaBO towards problems lying on a Riemannian manifold latent space embedded
in a high-dimensional Riemannian manifold.

In summary, the three first parts of this thesis prove that geometry-awareness is crucial for
successfully learning, controlling and refining robotics parameters lying on Riemannian
manifolds, while providing a proper mathematical treatment of these parameters. Our
approaches not only guarantee that recovered data lie on the desired parameter space, but
lead to better performances in terms of accuracy, stability, convergence and scalability
due to their ability in considering meaningful relationships between points in manifold
spaces. It is worth noticing that the proposed approaches are task-agnostic in the sense
that they are adapted to learn and refine a full range of skills with the only constraint that
the manifold or combination of manifolds must be provided to the different algorithms
according to the task specifications.

In Part IV, we proposed to introduce domain knowledge by leveraging structure-awareness
in two learning algorithms. We first presented a new class of multi-output GPs with non-
stationary prior mean and kernel based on GMR. We showed that incorporating a prior
model into a GP allowed the resulting approach to benefit from the properties of both
the prior model and the GP architecture. Then, we introduced an extension of mixture
of experts to tensor-valued data. We showed that, by incorporating information on their
structure into the mixture-of-expert model, the data are efficiently exploited. Therefore,
a structure-aware model trained with a small amount of data is able to overcome the
overfitting problem and to achieve better performance than the corresponding structure-
unaware approach.

Overall, the different problems and applications considered throughout this thesis have
been shown to greatly benefit from the introduction of domain knowledge into the
corresponding algorithms. Incorporating supplementary information on the data into
learning, control and optimization approaches generally leads to a better exploitation of
these data and therefore improve the performances of the algorithms. While geometry-
and structure-aware approaches generally comes with a higher computational cost than
their unaware counterparts, this extra computational burden was not an issue in the
applications considered in this thesis. Moreover, approximations can be made to fasten
some of the proposed algorithms, e.g., simpler forms of retraction approximating the
exponential maps may be exploited [Absil et al., 2007b].
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11.2 Future Work

In this closing section, we discuss some of the potential research directions based on the
contributions of this thesis.

Extensions of the Manipulability Analysis and Transfer Framework

A consequent part of this thesis treated the analysis, learning, tracking and transfer of
manipulability ellipsoids. Although only the position-related parts of the manipulability
were used in most of our examples, all the presented methods are valid to treat either
the orientation-related part or the full manipulability ellipsoids. Following this line,
an interesting extension to the manipulability-based analysis presented in Chapter 4
consists in similarly analyzing the role of the orientation-related part — along with
its evolution with respect to the position-related part — of the human manipulability
in different manipulation tasks. Moreover, the presented manipulability analysis and
transfer framework could also be applied in a variety of other human motions, e.g., for
locomotions patterns or for in-hand manipulation of objects. The latter could also benefit
to the field of prosthetic hands, in which a notion of manipulability could be implemented
in order to facilitate graping and manipulation motions for the user. Finally, an other
interesting direction of research arises from the observation that human manipulability
ellipsoids may be analyzed from a planning point of view. As discussed in Chapter 4, the
manipulability ellipsoids observed in between two actions indicate a posture adaptation
that anticipates the next action. Therefore, human manipulability ellipsoids may be
exploited in human-robot collaboration scenarios, where the robot may anticipate the
actions of the human and adapt its behavior consequently. Moreover, based on the
human-to-robot transfer experiments of Chapter 6, it would be interesting to further
investigate how robot manipulability may be exploited in a planning framework, i.e., for
a robot to adapt its posture in anticipation of the next action.

Extensions of GaBO

The GaBO framework presented in Chapter 7 endows BO with the ability to efficiently
refine and optimize parameters belonging to Riemannian manifolds. As discussed in
Chapter 7, GaBO may be used to optimize simultaneously several parameters belonging
to different manifolds by defining the search space as a product of manifolds. In LfD,
demonstrated trajectories are often encoded via a GMM. In such cases, it may be
desirable to refine the learned model in order to adapt to changes in the task or in the
environment. To do so, Rozo [2019] proposed to refine the means of the learned task
GMM according to user’s guidance, provided via interaction forces. In this context,
GaBO could be used to refine not only the means, but the covariances matrices of the
Gaussians components and potentially a full GMM. Moreover, when user’s guidance is
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not available, an interesting direction of research consists in the development of a model
able to decide which components of the GMM should be updated and when. Going one
step further, the developed model could also decide to add or remove components when
required. Therefore, future work will investigate extensions of the GaBO framework to
automatically and efficiently refine and optimize GMM models. Note that this includes
not only GMMs defined in Euclidean spaces, e.g., encoding position-based trajectories,
where the component means belong to R¢ and their covariances to Sf ., but also GMMs
on Riemannian manifolds, e.g., encoding manipulability-based trajectories, where the
component means belong to Sﬁ . and their covariances to Sym@*4*dxd - Due to the
number of parameters to optimize in a GMM, this problem is intrinsically linked with
high-dimensional Bayesian optimization. In particular, two interesting research directions
may be followed in that field to complement and extend the approaches presented
in Chapters 7 and 8. First, heterogeneous objective functions may not be efficiently
represented by a global surrogate model. Therefore, we may take inspiration of the
approach proposed in [Eriksson et al., 2019] and design local surrogate models for GaBO.
Secondly, the acquisition functions may sometimes be sharp (i.e, flat with some few
peaks) when only few data are observed, especially for high-dimensional parameter spaces.
Therefore, future work may investigate solutions to this problem in the context of GaBO.
To do so, an interesting starting point would be the work presented in [Rana et al.,
2017b], which proposed to use elastic GPs to improve the optimization of acquisition
functions in Euclidean space.

Towards Manifold Learning

While the geometry of the non-Euclidean spaces considered in this thesis was known, many
applications involve non-Euclidean parameters spaces whose geometry is not directly
available. As an example, the trajectory of a robot in a cluttered environment corresponds
to a subset of the Euclidean space R3, which does not include the space covered by the
obstacles, as the end-effector cannot, and should not, access this part of the space. To
handle such cases, a possibility in to learn the corresponding manifold from the collected
data [Hauberg et al., 2012; Arvanitidis et al., 2019]. Such approaches may potentially be
used to encode sensory information collected by the robot, to describe the space of a
task that the robot should learn to execute, or to meaningfully measure the difference
between two possible robot trajectories. Therefore, there is a clear interest for coupling
robot learning algorithms with Riemannian manifold learning approaches.
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A.1 Identification Method for the Kinematics of an

Anthropomorphic Arm

The computation of the human arm manipulability is based on the identification method
for anthropomorphic arm kinematics proposed in [Ding and Fang, 2013; Fang and Ding,
2013]. This appendix provides the formulas of the forward and inverse kinematic mappings
based on the human arm triangle model depicted in Figure 4.2.

Algorithm 9: Inverse mapping from task space to human arm triangle space

1 Compute o =

Input: Previous and current positions € and x, current orientation R*
Output: Human arm triangle model parameters {r,l, «, f, p}

arccos(12, 412, — =) .
)

selew

2 Compute I:

3
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13

if arccos ( ) > arccos ( \/M) then
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else if arccos L1 < arccos then
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else
if arctan > arctan then
~g > ( Vv x?"’%)
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RERE
else if arctan ) < arctan( =3 2) then
:cl+:52
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else

l is an arbitrary unit vector;

14 Compute r = (H%H’ I x ||73H’ l) R3(0) (é) with § = arccos (%),
15 Extract f and p from R* = (f, p X f, p)
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In order to compute the manipulability of the human arm, we first need to infer the joint
angles of the anthropomorphic arm model in function of the position and orientation of
the wrist in task space, which in our case is given in the database [Maurice et al., 2019].
The corresponding inverse kinematic mapping is computed with Algorithms 9 and 10.
The inverse mapping {&,x, R*} — {r,l,«, f,p} from the task space to the human
arm triangle space is first computed with Algorithm 9, where & and x are the previous
and current wrist positions, respectively, and R?* is the rotation matrix describing the
orientation of the wrist in the task space.

Algorithm 10: Inverse mapping from human arm triangle space to joint space

Input: Human arm triangle model parameters {r,l, o, f, p}
Output: Joint angles {q ...q7}

ro

1 Compute ¢; = arccos Wore ;
2 3

if —rg < 0 then
q1 < 2T — q1;
end

21 2
s1+s3

5 Compute g2 = — arccos ( = ) with s = Rl (¢1)7;
6 Compute ¢s:
—sin(—q2)

7 Ags = arccos(tTl) with t = Ry ((h) (cos(qg) );
0
if (r x t)Tl > 0 then

q3 = 5 + Ags;
10 else
11 g3 = 5 AQ3,

12 Compute q4 =a—m;
13 Compute f and p in the wrist frame:

14 f'=R"Tf p = R®"p where R* = ('wl, wa, wg)
1

15 with wy, = (r, I xr, l) Rs(av — ) (8), w3 = I and wy = w3z X wi ;
16 Compute g5 = arccos | ——22

e Vi
17 if p5 > 0 then
18 qs < 2 — qs;
19 end

20 Compute gg = arccos p

sin(ge) T
21 Compute gy = arccos —cos(ge) cos(as) | f |;

— cos(ge) sin(gs)

sin(ge
22 if (—p’ X <—cos(qs)005(q5)>> f' <0 then
— cos(ge) sin(gs)
23 qr < —qr;
24 end
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Then the inverse mapping {r,l, o, f,p} — {q1...q7} from the human arm triangle space
to the joint space is computed with Algorithm 10. In the two aforementioned algorithms,
lse and le,, denote the human arm length from the shoulder to the elbow and from the
elbow to the wrist, respectively. Moreover, the rotation matrix R;(d) corresponds to a
rotation of an angle é around the i-th axis of coordinate.

Algorithm 11 presents the forward mapping ¢ — {x, R*} from the joint space to the task
space, that may be used to compute the human arm Jacobian. We refer the interested
reader to [Ding and Fang, 2013; Fang and Ding, 2013] for the complete development of
the formulas presented in this appendix.

Algorithm 11: Forward mapping from joint space to task space

Input: Joint angles {q1 ...q7}
Output: Wrist position & and orientation R*
1 Human arm triangle model parameters:

2 Compute @ =7+ qq4 ;
sin(gz) sin(gs)
3 Compute I = | —cos(q1) cos(gz) sin(g3)—sin(q1) cos(gs) |;
—sin(q1) cos(gz) sin(g3)+cos(q1) cos(gs)

cos(g2)
4 Compute r = (COS(Ql)Sin(qz) );
sin(q1) sin(g2)
— cos(gs)
5 Compute p = R¥p’ with p’ = (—sin(qe)COS(QS)> ;
— sin(ge) sin(gs)
6 Compute f = RY f/ with
, sin(ge) , sin(ge) ,
f = —cos(ge)cos(gs) |, —pP' X | —cos(gs)cos(gs) |, —p R3(Q7) (

— cos(ge) sin(gs) — cos(ge) sin(gs)

7 Task space parameters:

[e=le) g
~—

lew+lse COS(7T+O¢)
8 Compute © = (r, I xr, l> ( —lse sin(m—a) );
0
9  Compute R = (f, px f, p) ;
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B.1 Symbolic Manipulability Jacobian for a Serial
Kinematic Chain

The computation of the manipulability Jacobian involves computing the derivative of the

robot Jacobian w.r.t. the joint angles. Those derivatives can be computed in a symbolic

form as shown in [Bruyninckx and De Schutter, 1996]. We remind here the symbolic

derivative for the hybrid representation of the Jacobian J € R5*™ that is used in the
computation of the manipulability Jacobian J.

The i-th column of the Jacobian is denoted by

Ji— (ff) | (B.1)

with w? € R? and v’ € R? the rotational and translational components of the Jacobian.

The derivative of the Jacobian w.r.t. the joint angles is a third order tensor ‘g—‘; € R6xnxn
with mode-1 fibers or columns

<8J) B OJ! B PA(Jj)JZ' if 7 <4 (B.2)
dq); 0 | —MaA(JNJ ifj>i '
where )

. [’UJ]X] 03><3

PA(J7) = : , B.3

A () (0 e (B3)
; O3x3 0O3x3

Ma(J?) = : , B4

AW (WX] 03X3> (B4)

and x the cross product between two vectors. The notation [w’x] in a matrix denotes
that the corresponding component of the result of the right-multiplication of the matrix
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by a vector is equal to the cross product between w’ and the corresponding vector

- i % w
component, e.g. Pa(J7)J" = W xw)
w’) x v

Note that the time derivative of the Jacobian can therefore be computed as

dJ NN
- Z @Qj' (B.5)
j=1

B.2 Symbolic Dynamic Manipulability Jacobian for a
Serial Kinematic Chain

The derivative of the robot inertia matrix w.r.t. joint angles is necessary for the
computation of the dynamic manipulability Jacobian. It can be computed in closed form
as follows.

The inertia matrix A(q) € R"*" can be written as
Mg => T (A 0y, (B.)
i=1 Ao mI) " .

where J;, A; and m; are the Jacobian, inertia matrix and mass of link 7, respectively [Park,
1995; Murray et al., 1994].

The derivative of the inertia matrix is the third order tensor % € R™*"X" computed as
oA Ny Al T oJ; T
— = — X9 J.; M; x1J; M;, B.7
(5q gt aq 2J 1 + aq 1J; 7 ( )

where M; = <1;z m?I) and %{; is computed with Eq. (B.2).
B.3 Symbolic Derivative of the Manipulability Jacobian
for a Serial Kinematic Chain

In some cases, e.g. in the acceleration tracking controller, the time derivative of the
manipulability Jacobian is required. This time derivative can be computed symbolically
by exploiting the first and second derivative of the Jacobian w.r.t. the joint angles.

The time derivative of the velocity manipulability Jacobian J% € R%*™*" defined as

. 0J oJT
Jm:aquzJ‘FainlJ, (B.8)
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Kinematic Chain

is obtained by exploiting the chain rule as

0T 0 (0J oJ"
B.
ot m(a e+ 5 X1J> (B.9)
o2 oJ  oJ g7 0JT 0
ah 9F 0 O 9F 9 B.1
atoq 27 T aq *2 ot T atoq VT ag < o (B.10)

The time derivative of the Jacobian is given by Eq. (B.5) and the time derivative of the
derivative of the Jacobian w.r.t. joint angles is given by

LN |

Ik, B.11
3t8qj Z < 9g1.0q; " (B.11)

where the second derivative of the Jacobian w.r.t. the joint angles is a fourth order tensor
92] ¢ ROxnxnxn with mode-1 fibers or columns

0q?
(PA(JJ)PA(Jk))Ji —&—PA(Jj)(PA(J’“)Ji) if k<j<i
PA(Jf)(PA(Jk)Ji) i j<k<i
27\ 0| —Pa()(Magh) ) if j<i<k
<8q2> ©0¢k0qT ) —(Pa(J%)MA(JY) Ji—MA(Jj)<PA(J’“)Ji) if k<i<j
—(PaA(JF)YMA(J?))J? ifi<k<j
—(Pa(J7)MA(JF))J? ifi<j<k

(B.12)

where Pa(J7) and M (J*) are defined as in (B.3) and (B.4), respectively. The time
derivative of the force manipulability Jacobian J F and the manipulability Jacobian J €
corresponding to the dynamic manipulability ellipsoid can be computed symbolically in
a similar way using Eqgs. (B.5) and (B.11). Moreover, their derivative w.r.t. joint angles
can be computed symbolically using the chain rules, Egs. (B.2) and (B.12).
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C.1 Distances between Points on Nested Spheres

The geometry-aware mGP used in HD-GaBO involves the computation of kernel functions
based on distances between data projected onto nested Riemannian manifolds with the
projection mapping m : SP + S¢ (8.7). We compute here the distance between projected
data on nested spheres and show that this distance is invariant to the parameters

{TD, ‘e Td+1}.

To do so, we first compute the distance dgp-1(mp(x;), mp(x;)) between two points
Ti, Tj € SP projected onto SP~!. Given an axis vp € SP and a distance rp € ]0,7/2],
the projection mapping mp : SP - SP~! is computed as (8.6)

1 Sin(’l”D)iB—l-Sin (dSD(’UD,CB) —TD)UD
z = mD(m) = —— TyuwcR . (Cl)
sin(rp) sin (dsp (vp, a:))
\—\/—/
scaling dim. red. + rot. projection onto AP —1
By exploiting the identity
sin(a — ) = sin(«) cos(B) — cos(a) sin(f), (C.2)

and the distance formula dgp (vp, ) = arccos(v)x), we can further rewrite (C.1) as

1 sin(r
z = mD(m) = — Iy R ( D) (m + vgva) + COS(TD)’UD .
sin(rp) sin (dsp (vp, m))
—_—— ——
scaling dim. red. + rot. projection onto AP —1

(C.3)
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The distance dgp—1 <mD(azi),mD(ccj)> is given by
dsp-1 (mp(wi),mp(a:j)) = dgp-1(zi, z;) = arccos(z] z;). (C.4)

By defining the projection onto AP~! as the function z = p(x), we can compute

1
T, _ TpTyT ,
i &j sz(rD x;) R Ijypeloranc R p($J)v (C.5)
1
= %00 (p 2:)TR" R p(x;) — cos*(rp)), (C.6)
1 2
~ sin?(rp) (p s (TD))’ (C.7)
T
sin? a:Z — vgwlvp) (ccj — 'vlT)a:j'vD) ) - )
= + cos“(rp)vpvp — cos“(rp) |,
sin® sin dsD 'vD7:cZ)> sin <d5D (’UD,Q,']'))
(C.8)
-
B <$l — UBQZZ"UD) (xj — ’UBaZjUD> (C 9)

sin (dsp (vp, w,)) sin (dsD (vp, iBJ))

so that z z;, and thus the distance (C.4), are invariant w.r.t rp. Note that Equation (C.6)
was obtained by using the fact that the last coordinate of the projections R p(x;) and
R p(z;) is equal to cos(rp) from the nested sphere mapping definition. We then used
the rotation matrix property RTR = I to obtain (C.7) and the unit norm property of
vp, so that vivp = 1 to obtain (C.9).

As the distance (C.4) is invariant w.r.t. rp for any dimension D and as the mapping
m is a composition of successive mappings mp, we can straightforwardly conclude that
the distance dga (m(ml),m(m])) with z;,x; € SP and d < D is invariant w.r.t. the
parameters {rp,...7441}.
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In order to integrate safely in our society, | believe that robots need to be provided with efficient and reliable learning
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Research Experience

Doctoral Research Assistant Aug. 2016 — July 2020
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, and Idiap Research Institute, Martigny, Switzerland
My thesis aims at enhancing robot learning and control capabilities by introducing domain knowledge into the
corresponding models. The developed approaches are built on Riemannian manifolds to represent rigid-body
orientations, inertia matrices, manipulability ellipsoids, or controller gain matrices. | worked on introducing geometry-
awareness into a probabilistic learning-from-demonstrations technique, into control methods and into a Bayesian
optimization framework to transfer and refine robot skills.
Until April 2019, | was part of the collaborative project TACT-HAND (SNSF/DFG) collaborative project.

PhD Sabbatical April 2019 — Sept. 2019
Bosch Center for Artificial Intelligence (BCAI), Renningen, Germany
During my PhD Sabbatical, | focused on refining the skills learned by a robot and adapting them to new situations. |
introduced a novel geometry-aware Bayesian optimization (GaBO) framework that exploits the geometry of the search
space to properly seek optimal parameters that lie on Riemannian manifolds.

Student Research Assistant Feb. 2016 — July 2016
Idiap Research Institute, Martigny, Switzerland
| developed a framework to improve the drawing skills of a humanoid robot with visual feedback. Cameras and proximity
sensors were exploited to adjust the robot’s arm movements and compensate for the imprecision due to the intrinsic
compliance of the arms.

R&D Intern July 2015 — Sept. 2015
SenseFly, Cheseaux-sur-Lausanne, Switzerland
| was part of the research and development team for aerial imaging drones for professional applications. | developed
flight control algorithms for an intelligent mapping and inspection quadrotor.

Education

PhD Electrical Engineering 2016 — 2020
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
and Idiap Research Institute, Martigny, Switzerland
Thesis title: “Robot Skills Learning with Riemannian Manifolds: Leveraging Geometry-awareness in Robot
Learning, Optimization and Control”.
Advisors: Prof. Hervé Bourlard and Dr. Sylvain Calinon
Thesis committee: Prof. Auke ljspeert, Prof. Nicolas Flammarion, Prof. Frank Park, Dr. Jean-Baptiste Mouret

MSc Robotics and Autonomous Systems 2014 - 2016
with a Minor in Computational Neurosciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Thesis title: “Improving the Drawing Skills of a Humanoid Robot with Visual Feedback”, at Idiap Research
Institute, Martigny, Switzerland
Thesis advisor: Dr. Sylvain Calinon
Thesis committee: Prof. Auke ljspeert, Dr. Freek Stulp

BSc Microengineering 2011 - 2014
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

253



Honors and Awards

Idiap PhD Student Award Dec. 2019

At the end of each year, the Idiap Research is awarding a research award to a PhD student of the institute.

Best Presentation Award of the Conference on Robot Learning (CoRL) 2019 Nov. 2019

For the presentation of the paper “Bayesian Optimization Meets Riemannian Manifolds in Robot Learning”.
My presentation can be watched at https://www.youtube.com/watch?v=b75tSnt8554&feature=youtu.be&t=7763.

Robotics: Science and Systems (R:SS) Pioneer June 2018

RSS Pioneers is a day-long invitation-only workshop for senior graduate students and postdocs, that seeks to bring
together a cohort of the world’s top early career researchers in all areas of robotics.

Publications

Under-review Manuscripts

N. Jaquier, R. Haschke, and S. Calinon, “Tensor-variate Mixture of Experts for Proportional Myographic Control of a
Robotic Hand”, submitted to Robotics and Autonomous Systems. (Preprint as arXiv:1902.11104.)

Journal Articles

N. Jaquier, L. Rozo, D.G. Caldwell, and S. Calinon, “Geometry-aware Manipulability Learning, Tracking and Transfer”,
International Journal of Robotics Research (IJRR), 2020. (Preprint as arXiv:1811.11050.)

N. Jaquier, M. Connan, C. Castellini, and S. Calinon, “Combining Electromyography and Tactile Myography to Improve
Hand and Wrist Activity Detection in Prostheses”, MDPI Technologies, 5:4, Special issue on assistive robotics, 2017.

Conference Proceedings

N. Jaquier, L. Rozo, and S. Calinon, “Analysis and Transfer of Human Movement Manipulability in Industry-like
Activities”, in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

H. Girgin, E. Pignat, N. Jaquier, and S. Calinon, “Active Improvement of Control Policies with Bayesian Gaussian Mixture
Model”, in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

N. Jaquier, L. Rozo, S. Calinon, and M. Birger, “Bayesian Optimization Meets Riemannian Manifolds in Robot Learning”,
in Conference on Robot Learning (CoRL), 2019. (Oral presentation; Best presentation award.)

N. Jaquier, D. Ginsbourger, and S. Calinon, “Learning from Demonstration with Model-based Gaussian Process”, in
Conference on Robot Learning (CoRL), 2019.

N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon, “Geometry-aware Tracking of Manipulability Ellipsoids”, in Robotics :
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Application to Wrist Motion Estimation with SEMG”, in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2017, pp. 59-64.
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N. Jaquier, C. Castellini, and S. Calinon, “Improving Hand and Wrist Activity Detection using Tactile Sensors and Tensor
Regression Methods on Riemannian Manifolds”, Myoelectric control Symposium (MEC), 2017.

Workshop Papers

N. Jaquier, and S. Calinon, “Geometry-aware Control and Learning in Robotics”, in R:SS Pioneers Workshop, 2018.

N. Jaquier, L. Rozo, and S. Calinon, “Geometry-aware Robot Manipulability Transfer”, in Learning and Inference in
Robotics: Integrating Structure, Priors and Models (LAIR) R:SS Workshop, 2018.
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N. Jaquier, and S. Calinon, “Improving the Control of Prosthetic Hands with Tactile Sensing”, Micro & Nano Magazine,
Micronarc, 2018, pp. 42-43.



Open-source Software Development

GaBOtorch (https://github.com/NoemieJaquier/GaBOtorch)
This repository contains the source code to perform Geometry-aware Bayesian Optimization (GaBO) on Riemannian manifolds.
This Python code is based on the PyTorch, GPyTorch, BoTorch and Pymanopt libraries.

GaBOflow (https://github.com/NoemieJaquier/GaBOflow)
This repository contains the source code to perform Geometry-aware Bayesian Optimization (GaBO) on Riemannian manifolds.
This Python code is based on the Tensorflow, GPflow and GPflowOpt and Pymanopt libraries.

Manipulability (https://github.com/NoemieJaquier/Manipulability)
This MATLAB codes show simple examples for manipulability learning, tracking and transfer tasks. These approaches offer the
possibility of transferring posture-dependent task requirements between agents of different embodiments.

GMR-based GP (https://github.com/NoemieJaquier/GMRbasedGP)
This repository shows examples of application of Gaussian mixture regression (GMR), Gaussian process (GP) and GMR-based
Gaussian process on 2D trajectories. This Python code is based on the GPy library.

Invited talks

13.07.2019 Festival Scientastic, EPFL campus Valais-Wallis, Switzerland.

19.05.2019 Minisymposium on “Algebraic Geometry for Kinematics and Dynamics in Robotics”, SIAM conference
on Applied Algebraic Geometry, Bern, Switzerland.

22.11.2018 Valais/Wallis Al workshop “Al for rehabilitation and Prosthetics”, HES-SO Valais, Switzerland.
28.11.2017 Swiss Machine Learning Day, EPFL, Switzerland.
14.11.2017 Applied Mathematics Seminar, Applied Mathematic Dept., UCL, Belgium.

24.09.2017  Workshop on “Micro-data: the next frontier in robot learning ?”, IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS) , Vancouver, Canada.

23.05.2017 Numerical Analysis Seminar. Mathematic Dept., University of Geneva, Switzerland.
31.01.2017  Applied Machine Learning Days, EPFL, Switzerland.

20.01.2017  Class for operating room technicians, Upper School of the Health (ES Santé), Lausanne, Switzerland.

Workshop organisation

Workshop on Bringing Geometric Methods to Robot Learning, Optimization and Control
This workshop will be offered at the IEEE/RS) International Conference on Intelligent Robots and Systems (IROS), 2020.
Main organizer. Workshop website: https://sites.google.com/view/iros2020-geometric-methods/home
Minisymposium on Algebraic Geometry for Kinematics and Dynamics in Robotics
Offered at the SIAM Conference on Applied Algebraic Geometry 2019.
Main organizer and presenter. Workshop website: https://www.idiap.ch/workshop/magkdr/.

Teaching Experience

Students co-supervisions

2019 — 2020 Clément Vaes, MSc Student at Université Catholique de Louvain. This master thesis was co-
supervised by Dr. Estelle Massart, Prof. Pierre-Antoine Absil and Dr. Sylvain Calinon.
Thesis title: “Classification of Biologic Signals on the Symmetric Positive Definite Manifold”.

2019 Gauthier Muller, MSc Student at Ecole Polytechnique Fédérale de Lausanne (EPFL). This semester
project was co-supervised by Dr. Sylvain Calinon.
Project title: “TME vs CNN: a smaller comparison”.
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Teaching Assistance

2013 Lecturer’s Assistant for Analysis class (first year BSc students), Ecole Polytechnique Fédérale de
Lausanne (EPFL).

Reviewing service

Robotics and Autonomous Systems (RAS)

|IEEE Robotics and Automation Letters (RA-L)

IEEE Transactions on Industrial Informatics

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
IEEE International Conference on Robotics and Automation (ICRA)

Software Skills

Programming languages
Matlab
Python
C++

Robots
Panda (Franka Emika)
Baxter (Rethink Robotics)
WAM (Barrett Technology Inc.)

Languages

English (fluent)
French (native)
German (basic knowledge)
Spanish (basic knowledge)
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