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Project Description

Baxter is a bimanual robot driven by series elastic actuators. The intrinsic compliance of the arms has the
advantage that it is safe for the end-users sharing the robot’s workspace. However, it comes at the expense of
being less precise and less repeatable than a standard stiff industrial robot.

In this project, it is proposed to exploit the camera and sensors embedded within the robot to adjust the
robot’s arm movement and compensate for this imprecision. The vision and feedback capabilities will be tested
in a drawing experiment.

The project aims at developing a controller reproducing a set of strokes by exploiting both force and position
aspects, and using vision to evaluate the dissimilarity between planned and resulting strokes.
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The   goal   of   this   project   is   to   develop   a
controller for the humanoid robot Baxter to
reproduce a simple image with pen strokes
while exploiting the compliance of the arms
of   the   robot   and   the   visual   feedback
provided by its cameras.

First,   the drawing plane  is  estimated  using
the ViSP library and the image acquired by
the robot's left hand camera. The black dots
placed at  each  corner  of  the drawing zone
are  detected   and   tracked.  The  pose  of   the
drawing   plane   is   then   estimated   using
Dementhon's   approach   for   its   initialisation
and updated using a virtual visual servoing
approach. 

To   evaluate   this   estimation,   the   drawing
plane   is   estimated   precisely   with   the
intervention   of   the   user.   Moreover,   the
visual   estimation   is   readjusted   using   the
forces   applied   at   the   endeffector.   Typical
estimations   are   shown   by   Figure   I.
Compared   to   the   reference,   the   visual
estimation   is   shifted   of   a   few   centimetres
along zaxis.  However,   it   is  parallel   to   the
reference,   conversely   to   the   haptic
estimation, that is finally not used. 

Figure I : Estimated drawing planes.

Two   controllers   are   implemented   to   make
Baxter   draw   with   its   right   arm.   The
commanded   velocity   for   the   joints   of   the
velocity controller is given by

 The height of the endeffector relatively to
the drawing plane is adapted in function of
the force applied at the endeffector.

The torque controller is implemented with 

The gains emulate the inertia matrix of the
robot and are set as diagonal matrices. The
gains   of   the   second   joint   of   the   arm   are
designed so that it remains soft and helps to
adapt   the   height   of   the   endeffector
relatively to the drawing plane.

Figure II shows an example of images drawn
with each controller. The drawn shapes are
evaluated  visually   and  using  match  values
computed   with   Hu   moments.   The   images
drawn with the velocity controller are often
more   accurate   than   those   drawn   with   the
torque   controller.   However,   the   obtained
images are most of the time recognisable.

Figure II : smiley faces drawn with velocity (left) and
torque (centre) controller and example of tictactoe

game (right) where Baxter draws the crosses.

A tictactoe game is implemented using the
minimax   recursive   algorithm.   OpenCV
functions   are   used   to   recognise   the   user's
move. An example is show by Figure II.

The   quality   of   the   drawn   images   may   be
improved by computing precisely the inertia
matrix   and   by   using   a   controller   in
operational space. The camera may also be
used to readjust the drawn strokes online.
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1 Introduction

Drawing is an activity that we perform during our whole life. From the youngest age, toddlers already
draw. This act of scribbling helps for example to develop their perception, exercise their cognitive abilities and
improve their coordination and muscle control. Later, drawing capability is part of everyday life to explain
notions with sketches or for artistic purposes. As humanoid robots are developed to be human-like, to behave
similarly to humans and to collaborate and share social activities with them, it is relevant to study if we can
provide them the capacity to draw.

Several robots already have the capacity to draw human portraits. For example, Paul is a three joints
planar arm which produces observational drawings of people [1, 2]. Its sketches are considered as being of
artistic value by professionals. A HOAP2 robot was also programmed to draw aesthetic portraits after having
analysed the face of the model [3]. An other example of a drawing robot is E-David, an industrial robot that
can use brushes or pencils to paint using several colours [4]. ISAC is a dual armed humanoid robot that can
mimic an artist drawing simple shapes, taking advantage of its force sensors at the end-effector [5]. Moreover,
programming robots to draw may have an educational purpose. For example, Standford students designed
an artist robot turning JPEG images into sketches and a robot that wirelessly translates a sketch made by a
tele-operator into strokes a white board [6].

The industrial manipulators used in these applications are often stiff and controlled by velocity commands,
so that the drawing can be really precise if the robot is accurate enough. However, since there is no feedback
about the drawing environment, a small inaccuracy in the modelling of the environment, in the model of the
robot kinematic chain or in the control of the robot can result in the pen not being in contact with the paper or
pushing strongly against the drawing plane. The system needs to be recalibrated if, for example, the drawing
plane changed.

The goal of this project is to develop a controller for the humanoid robot Baxter to reproduce a simple
image with pen strokes. The project aims to exploit the compliance of the arms of the robot and the visual
feedback provided by the cameras to reproduce a set of strokes and evaluate the dissimilarity between the
planned and resulting drawings.

ViSP, an open source Visual Servoing Platform library, was used to determine the drawing plane.1 The
extraction of desired strokes from the source image and the evaluation of their reproduction in the drawing
were done using OpenCV functions. Two different controllers were implemented and tested on Baxter. Several
experiments were realised on Baxter to evaluate the accuracy and efficiency of the visual estimations and the
different controllers. Finally, a tic-tac-toe game was implemented to illustrate the drawing capabilities of the
robot in an interactive way.

Section 2 of this report presents the Baxter robot. Section 3 describes the detection of the drawing plane
and the computation of the corresponding referential. The generation of trajectories necessary to draw an
image is presented in Section 4. Section 5 presents the control of the robot using inverse kinematics and
two different control modes. The visual feedback and the evaluation of drawn strokes is shown in Section 6.
Section 7 describes the computation steps required to draw with Baxter. The developed tools are then tested
and evaluated in Section 8 and the tic-tac-toe game implementation is described by Section 9. Section 10 finally
concludes the report and makes suggestions about future work.

2 Baxter Research SDK Robot

Baxter is a humanoid robot developed by Rethink Robotics.2 Two pictures of the robot are shown in
Figure 1. It possesses two 7 degrees of freedom arms driven by series elastic actuators. Thus, its arms are

1https://visp.inria.fr/
2http://www.rethinkrobotics.com/
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intrinsically compliant, so that it is safer for the users to share the robot workspace. Baxter also has feedback
capabilities thanks to the torque sensors that are embedded at each joint. The drawback of the intrinsic
compliance is that the movements of the robot are less precise and less repeatable than those of a standard
industrial robot. Four modes are currently available to control the arm joints: position, velocity, torque and
raw position modes [7]. Grippers are placed as end-effector of each arm and can be used to hold objects.

(a) Baxter Research SDK Robot. Figure
adapted from [8].

(b) Arm joints of Baxter.

Figure 1: Baxter pictures.

Baxter has three cameras, one at each hand and one on the head. Is also possesses four user interface panels
composed of three push buttons and one indexing scroll wheel, two shoulders buttons and two buttons and one
touch sensor at the cuff of each hand. A 3-axis accelerometer is located inside each cuff and each hand has two
IR Range sensors.

Baxter’s head can be rotated to left or right direction and down to make the robot nod. Twelve sonar
distance sensors surrounded by yellow LEDs are mounted around the head of the robot.

Baxter is controlled via ROS topics and services.3 Baxter’s arms can be moved manually by pressing the
cuff of the hand. In this case, a controller compensating the effect of gravity is activated and the arms can
easily be placed by the user at a desired position.

3 Visual Detection and Estimation of the Drawing Plane

3.1 Setup

The drawing plane is detected and estimated using the ViSP library [9] with the image acquired by one of
Baxter’s cameras. ViSP, standing for Visual Servoing Platform, is an open source library providing tools to
develop visual tracking and visual servoing applications with control laws applicable on robotic systems.4

As the positions of Baxter’s arm joints are more precisely measured than the position of its head, one of
the hand camera is used to acquire the image to detect the drawing plane. The right hand of the robot was
chosen to hold the pen and draw in order to mimic human behaviour and to facilitate interactions with the
user as most people are right-handed. The right hand camera may be hidden behind the pen, so that the left
hand camera is used to acquire images of the drawings.

The drawing plane is placed in front of the robot and consists of a white sheet with one black dot at each
corner of the drawing zone. An example of placement of the dots and of the general setup with Baxter are
shown in Figure 2. For the experiments presented in this report, the drawing plane is placed horizontally.
However, it could be rotated as it is detected and estimated before each drawing.

3http://www.ros.org/
4https://visp.inria.fr/
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(a) Dots disposition on the white sheet. (b) General setup to make Baxter draw.

Figure 2: Disposition and placement of the drawing plane in front of the robot.

3.2 Dots Detection and Tracking

The parameters needed to fully describe a dot are the followings :
• Width;
• Height;
• Area;
• Size precision;
• Ellipsoid shape precision;
• Minimum grey level;
• Maximum grey level;
• Grey level precision.

Algorithm 1: Dots tracking
N = required number of dots;
if first call of the function then

initialisation = true;
end
if !initialisation then

for dot← 1 to N do
Search dot in restricted area around the centre of gravity of the previous dot;
if no dot found then

initialisation = true;
end

end
if less than N dots successfully tracked then

initialisation = true;
end

end
if initialisation then

Search dots in the whole image;
Sort the detected dots;

end

To detect the dots with a set of desired features, each pixel of the image is tested to determine if it belongs
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to a valid dot. On the one hand, if the current pixel has a grey level outside the allowed interval or if it already
belongs to a detected dot, there is no further check and the next pixel is analysed. On the other hand, if the
pixel may belong to a undetected dot, a blob is formed with the neighbouring pixels of the correct colour. If
its features correspond to the defined ones, the blob is added to the list of detected dots.

To track a dot, the detection algorithm is performed in an area around the last known position of the dot
in the image. If one blob with correct features is found in this area, it is assumed that it is the displaced dot.

Algorithm 1 describes the tracking of the four dots on the drawing plane. The dots need to be ordered
so that the pose of the drawing plane remains the same if the tracking is reinitialised. To respect the image
processing convention, the dots are listed clockwise with the upper left one at the beginning of the list.

3.3 Pose Estimation from Four Coplanar Points

3.3.1 Dementhon Approach

Dementhon’s approach estimates the object position and orientation in camera coordinates cMo ∈ R4×4

without previous initialisation [10, 11]. The matrix cMo is composed of a rotation matrix and a translation
matrix, as shown by

cMo =
(
R3×3 t3×1

01×3 1

)
. (1)

The rows of the rotation matrix R are the coordinates of the unit vectors e1, e2, e3 of the camera coordinate
system expressed in the object coordinate system with e3 = e1 ∧ e2. The translation vector t is the position of
the reference point (Xo;Yo;Zo) for the object in camera coordinates.

Generally, the object is defined by four or more feature points Mi. Each point is defined with its 3D
coordinates expressed in object frame of reference (oXi; oYi; oZi) and its 2D coordinates expressed in the image
frame of reference (xi; yi).

Figure 3: Perspective projection (mi) and scaled orthographic projection (pi) for an object point Mi and a
reference point Mo. Figure adapted from [10, 11].

Figure 3 shows the classic pinhole camera model with the following elements:
O, the centre of projection of the camera;
e1, e2, e3, the unit vectors of the camera coordinate system;
f , the focal length of the camera;
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G, the image plane;
Mo, the reference point for the object;
Mi, the feature points of the object with coordinates (Xi;Yi;Zi);
mi, the image of points Mi by perspective projection with coordinates (xi; yi);
pi, the image of points Mi by a scaled orthographic projection with coordinates (x′

i; y′
i).

The intrinsic parameters of the camera are known.
The object pose is fully described by e1, e2, xo, yo and Zo. An exact object pose is defined as an object

pose for which the equalities
xi = f

Xi

Zi
, yi = f

Yi

Zi
, (2)

are verified, so that the object points Mi fall on the lines of sight of the image point mi. A necessary and
sufficient condition for a pose to be an exact pose is that

m> f
Zo
e1 = xi(1 + 1

Zo
m>e3)− xo

m> f
Zo
e2 = yi(1 + 1

Zo
m>e3)− xo

(3)

are satisfied for all points Mi, where m> is the vector going from Mo to Mi.
The POSIT algorithm (Pose from Orthography and Scaling with Iterations), described by Algorithm 2 is

then used to find the pose of the object. If the feature points are coplanar, two approximate poses are found.
If one of those poses is behind the camera, the other one is chosen. Otherwise, the pose minimising the average
distance between the actual image points (xi, yi) and the projected points from the computed pose (x′i, y′i)> is
kept. Thus, the pose is evaluated by computing the average distance between actual image points (xi; yi) and
the projected points from the computed pose (x′i, y′i)>.

Algorithm 2: POSIT
εi = 0, n = 1;
while ‖εi(n) − εi(n−1)‖ > threshold do

Solve Equation 3 for e1, e2 and Zo;
Compute εi(n);
n+ +;

end

Dementhon’s approach is fully described for non-coplanar feature points in [10] and for coplanar feature
points in [11]. This approach is implemented in ViSP.

3.3.2 Virtual Visual Servoing Approach

The virtual visual servoing approach estimates the object position and orientation in camera coordinates
cMo ∈ R4×4 considering the problem as a visual servoing problem.

The goal of visual servoing is to move a camera to observe an object at a given position and orientation in
the image. The final position of the camera is reached by minimising the error between a desired state of image
features and the current state of these features. The goal of the pose computation is to minimise the error
between the observed image features p and the back-projection of these features p′ according to the matrix
cMo. A virtual camera is thus moved from the initial pose to the final pose using a visual servoing control law
in order to ensure this minimisation.

The error to be minimised is given by
e = C(p′ − p), (4)

where C is the combination matrix. C has to be chosen so that CLp is full rank, where Lp is the interaction
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matrix that links the image features p to the virtual camera velocity vc as shown by
ṗ′ = Lpvc (5)

The following control law can be obtained by deriving Equation 4 and defining an exponentially decoupled
decrease of the error e.

vc = −λL†pe (6)
In this case, C is equal to the pseudo-inverse of the interaction matrix L†p. λ is a proportional coefficient that
determine the rate of the decay of the error.

The interaction matrix for one feature point is given by

Lpi =
(
− 1

Zi
0 xi

Zi
xiyi −(1− x2

i ) yi

0 − 1
Zi

yi
Zi

(1− y2
i ) −xiyi −xi

)
. (7)

(x, y)> are the 2D coordinates of the point expressed in the image frame of reference and (X,Y, Z)> are its
3D coordinates expressed in camera frame of reference computed from the position of the point in object frame
of reference and the estimation of cMo for the previous image. The interaction matrix has a row size equal to
two times the number of feature points.

The virtual camera is then moved at velocity νc resulting in the change of camera pose between two images
given by an homogeneous matrix M . Finally, the estimation of the pose is given by

cMo(n+1) = M cMo(n), (8)

where n is the image number.
The advantages of this algorithm is that it is simple and can consider various geometrical features to

compute the pose by deriving the interaction matrix for these features. The drawback is that the convergence
of the control law is not guaranteed for large errors ‖p′ − p‖. However, the motion between two successive
images acquired at video rate is small enough to ensure the convergence, so that only the initialisation of the
pose can be problematic.

The virtual visual servoing approach is fully described in [12]. It is also implemented in ViSP.

3.3.3 Drawing Plane Pose Estimation

The drawing plane pose is estimated only if the four dots have been correctly tracked by the dot track-
ing function. If the pose is computed for the first time, it is estimated with Dementhon approach to avoid
convergence problems.

The estimation of the pose for the next images is computed using the virtual visual servoing approach and
the last estimation is used to compute the current pose.

If one or several points are lost for a given number of frames during the tracking, the pose is initialised
again with Dementhon approach.

3.4 Drawing Plane in Robot Coordinates

The matrix cMo allows to compute the drawing plane in camera coordinates. As Baxter is controlled with
commands in the robot coordinates, it is necessary to compute the drawing plane in this coordinates with
Equation 9. The matrices rMc ∈ R4×4 and rMo ∈ R4×4 represents the camera position and orientation in robot
coordinates and the object position and orientation in robot coordinates, which can be computed with

rMo = rMc
cMo (9)
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4 Trajectory Generation

4.1 Trajectory Generation from an Image

4.1.1 Preprocessing of the Image

The images used to generate trajectories to be drawn are pictures with simple shapes as shown by Figures 4a
and 5a.

The image is first converted from RGB to grayscale, and a threshold is then used to convert it to a binary
image. Figures 4b and 5b show examples of thresholding. The threshold value was fixed at 70 for the two
images.

(a) Original image. (b) Image after threshold operation.

Figure 4: Example of thresholding.

(a) Original image. (b) Image after threshold operation.

Figure 5: Example of thresholding.

4.1.2 Thinning Operation

After the thresholding operation, the image is thinned used Guo-Hall algorithm in order to extract the
contours. The neighbourhood of a pixel p in the image is defined as shown by Table 1. Guo-Hall algorithm
is a two-subiteration algorithm which preserves connectivity in the images and produces thin results while
alternatively deleting north and east, then south and west boundary pixels. It is described by Algorithm 3,
where ¬, ∧ and ∨ refer respectively to logical complement, AND and OR.

Figures 6a and 7a show examples of thinned images. Guo-Hall algorithm is fully described in [13] and has
been implemented for OpenCV in [14].
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p1 p2 p3

p8 p p4

p7 p6 p5

Table 1: Neighbourhood definition for pixel p.

Algorithm 3: Guo-Hall
while points are deleted do

for all pixels p do
C(p) = ¬p2 ∧ (p3 ∨ p4) + ¬p4 ∧ (p5 ∨ p6) + ¬p6 ∧ (p7 ∨ p8) + ¬p8 ∧ (p1 ∨ p2);
N1(p) = (p1 ∨ p2) + (p3 ∨ p4) + (p5 ∨ p6) + (p7 ∨ p8);
N2(p) = (p2 ∨ p3) + (p4 ∨ p5) + (p6 ∨ p7) + (p8 ∨ p1);
N(p) = min(N1(p), N2(p));

if



a. C(p) = 1
b. 2 ≤ N(p) ≤ 3
c. Apply one of the following:
1. (p2 ∨ p3 ∨ ¬p5) ∧ p4 = 0 in odd iterations
2. (p6 ∨ p7 ∨ ¬p1) ∧ p8 = 0 in even iterations


then

Delete pixel p;
end

end
end

4.1.3 Contours Extraction

After the thinning, the contours of the image are extracted using the function findContours of OpenCV
[15]. To find the contour, all pixels of the image are scanned. If a pixel is white, it belongs to a new border
and it is considered at the start point. The border is then followed by turning clockwise around the start pixel
considering its Moore neighbourhood, until an other white pixel is found. This pixel is marked as a border and
the border following continues by turning clockwise around it. When the start pixel is visited a second time,
the detection of the current contour is done and the scan of the image continue. This algorithm is explained
in [16].

The function is first used to extract the external contours in shown by Figures 6b and 7b. Those contours
are then removed from the original image and the internal contours are extracted as shown in Figures 6c and 7c.
This two-steps extraction avoid having the same part of the image included in two or more different contours.

4.1.4 Generation of Trajectories from Contours

The function findContours of OpenCV stores the contours as vectors of points. Each point is transformed
into a trajectory point using

x = (u− w/2)r,
y = (v − h/2)r,

(10)

where (x, y)> are the coordinates of the point in the drawing plane, (u, v)> are the pixels coordinates of the
point in the image, w and h are respectively the width and the height of the image in pixels and r is the length
of one pixel in meter defined in function of the desired size of the drawn image.

As one trajectory point is given to the robot per control cycle, the distance between two points determines
the drawing speed. The maximum speed is given by v = dmaxf , where dmax =

√
dx2

max + dy2
max is the maximum
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(a) Thinned image. (b) External contours. (c) Internal contours.

Figure 6: Example of thinning and contours extraction.

(a) Thinned image. (b) External contours. (c) Internal contours.

Figure 7: Example of thinning and contours extraction.

distance between two points and f = 500Hz is the frequency of the control loop of the robot. The maximum
drawing speed is chosen to be reasonable for the robot and to have visually a smooth movement. Thus, if the
distance along x or y between two trajectory points is above dxmax or dymax, computed with the maximum
drawing speed, new trajectory points are added in-between to keep the drawing speed below the maximum
speed.

4.2 From Drawing Plane to Robot Coordinates

The coordinates of the computed trajectory points then need to be transferred into robot coordinates.
Figure 8a shows the coordinate systems of the drawing plane, the left hand camera, the pen and the robot.
The pen frame of reference is a shifted version of the right gripper frame of reference, as the pen is aligned
with the gripper.

The desired orientation of the robot’s arm during the drawing is shown in Figure 8b. This arm configuration
was chosen because Baxter is designed to manipulate objects in this configuration, and the gravity is better
compensated around this pose (i.e., the modeling and calibration procedure have been optimized for this
configuration).

The coordinates of a trajectory point in the drawing plane coordinates can be expressed by oX =
(
I3×3 t3×1

01×3 1

)
with t = (x, y, z)> and z = 0 as the trajectory lies on the drawing plane. The homogeneous matrix corresponding
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to the coordinates of this trajectory point in robot frame of reference is given by
rX =

(
Rz(π/2) 0

0 1

)
rMo

oX. (11)

The rotation of π/2 around z-axis of the drawing plane is necessary due to the conventions of the different
frames of reference.

(a) Frames of reference of Baxter: robot, left hand camera,
pen tip and drawing plane.

(b) Orientation of the arm relative
to the drawing plane.

Figure 8: Position and orientation of different frames of reference : x, y and z axis are red, green and blue.

5 Control of the Robot

5.1 Representing the Pose of the End-Effector

5.1.1 Representing Orientation

The position and orientation of a rigid body define its pose. In this case, the goal is to define the pose of
the end-effector of the robot, namely the pen tip, expressed in robot coordinates (see Figure 8a). The position
of the end-effector is commonly represented with Cartesian coordinates (x, y, z)>. However, its orientation is
represented in various forms, including rotation matrix, Euler angles or quaternions [17].

5.1.2 Rotation Matrix

A rotation matrix is an orthogonal matrix with a determinant equal to 1. The columns of the rotation
matrix are the basis vectors of the end-effector coordinates expressed in robot coordinates. Moreover, its rows
are the basis vectors of the robot coordinates expressed in end-effector coordinates.

To represent a pose, the rotation matrix can be integrated into homogeneous matrices eMr and rMe defin-
ing respectively the pose of the robot in end-effector coordinates and the pose of the end-effector in robot
coordinates. These two matrices are

eMr =
(
R3×3 eOr

3×1

01×3 1

)
,

rMe =
(
R> 3×3 rOe

3×1

01×3 1

)
,

(12)

where eOr and rOe are respectively the origin of the robot frame of reference in end-effector coordinates and
the origin of the end-effector frame of reference in robot coordinates. The multiplication of these two matrices
is equal to the identity matrix.
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The advantage of homogeneous matrices is that the multiplication of two homogeneous matrices yields
another homogeneous matrix whose application to a point is the same than the successive applications of the
two original matrices.

5.1.3 Euler Angles

A common way to represent the orientation is to use a vector of three Euler angles (φ, θ, ψ)>. A vector
of three Euler angle describes a sequence of three coordinates rotations Rijk = Ri(φ)Rj(θ)Rk(ψ). A valid
rotation sequence is able to span the space of all three dimensional rotations. A valid rotation sequence often
used is the sequence (1, 2, 3) for which φ, θ and ψ are also called roll, pitch and yaw. This rotation sequence is
shown by Figure 9.

Figure 9: Representation of Euler angles (1, 2, 3) sequence. Figure adapted from [17].

Figure 10: Example of two Euler sequences describing the same orientation.

Thus, the pose of a rigid body can be described by x = (x, y, z, φ, θ, ψ)>.
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The main advantage of Euler angles is that they are easy to interpret. Thus, they are very popular. However,
some important functions of these angles have singularities. These singularities arise when the second Euler is
at a critical value and make the fist and third Euler angles indistinguishable. For example, if the pitch angle
of the sequence (1,2,3) is equal to 90 deg, a roll and yaw angles of 45 deg describe the same orientation than a
roll and yaw angles of 90 deg.

5.1.4 Quaternions

Quaternions are a generalisation of complex numbers. A quaternion is written as q = qw + qxi+ qyj + qzk

or q = (qx, qy, qz, qw)>. The inverse of a quaternion is q−1 = (−qx,−qy,−qz, qw)>. Moreover, quaternion
multiplication is not commutative. The result of the multiplication between q and p is given by

qp =
(

qwpw − (qx, qy, qz)(px, py, pz)>

qw(px, py, pz)> + pw(qx, qy, qz)> − (qx, qy, qz)> ∧ (px, py, pz)>

)
(13)

and the difference between two quaternions is qp−1.
A unit quaternion has a norm ‖q‖ =

√
q2

w + q2
x + q2

y + q2
z equal to 1. It can be used to represent the

orientation of a rigid body as it is equivalent to a pure rotation.
The rotation of an object by the result of the multiplication of two unit quaternions is equivalent to the

rotation of the object by the first quaternion followed by the rotation by the second one. Thus, sequences
of rotation can be represented by unit quaternions. Similarly, the difference between two unit quaternions is
equivalent to the rotation performed to go from the first quaternion to the second. Thus, the pose of a rigid
body can be described by x = (x, y, z, qx, qy, qz, qw)>.

A rotation matrix can be computed from a unit quaternion as shown by

Rq(q) =


qwqw + qxqx − qyqy − qzqz 2qxqy − 2qwqz 2qwqy + 2qxqz

2qwqz + 2qxqy qwqw − qxqx + qyqy − qzz 2qyqz − 2qwqx

2qxqz − 2qwqy 2qwqx + 2qyqz qwqw − qxqx − qyqy + qzqz

 . (14)

A rotation vector can also be computed from a unit quaternion, namely

v(q) = 2 arccos
(

(qx, qy, qz)>
‖(qx, qy, qz)>‖

)
. (15)

The rotation vector representation is similar to the axis-angle representation as it gives a rotation axis and
an angle. The axis of rotation is given by the direction of the vector and the angle of rotation is defined by its
amplitude.

The advantages of using unit quaternions to represent the orientation of a rigid body are that no singularity
occurs in their important functions and that they are well-suited to integrate the velocity of a rigid body over
the time. The main disadvantage is that they have no intuitive physical meaning.

5.2 Forward Kinematics

The kinematic chain is a mathematical model in which rigid bodies, or links, are connected by joints.
Kinematic chains of serial robots, like Baxter’s arm, are formed by links connected in series. The joint variables
(q1, q2, ..., qn)> ∈ Rn of the robot are the linear or angular inputs sent to the actuators. In the case of Baxter’s
arms, n = 7 for each arm. The operational variables define the pose of the end-effector. The forward kinematics
express the operational variables (x1, x2, ..., xm)> ∈ Rm, often equivalent to (x, y, z, φ, ψ, θ)> with m = 6, in
function of the joint variables, so that x = FK(q).

5.3 Inverse Kinematics

The inverse kinematics conversely expresses the joint variables in function of the operational variables, so
that q = IK(x). For serial robots, the inverse kinematics can have more than one solution. There are thus
more than one configuration for some position of the end-effector and inverse kinematics are complex to solve.
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The robot Jacobian J(q) ∈ Rm×n relates the joint velocities q̇ to the linear and angular velocities ẋ of the
end-effector as shown by

ẋ = J(q)q̇ with J(q) = δ

δq
FK|q. (16)

J(q) will further be written as J in order to make the equations lighter. The number of solutions of
Equation 16 is determined by the rank of the Jacobian. If rank(J(q)) < n, there is no solution, if rank(J(q)) =
n, the solution is unique and finally, if rank(J(q)) > n, there is a infinite number of solution forming the solution
space. In this last case, the robot is redundant and a null space is defined by the solution to J(q)q̇ = 0.

The Jacobian can be decomposed in two parts, one for position and one for orientation, as shown by

J =
(
Jpos

Jor

)
. (17)

More generally, each row i of the Jacobian stands for the component xi of x.
The desired joint angles is computed at each time step to follow a trajectory x̂ in Cartesian space using

xt = FK(qt), (18)
ˆ̇qt = J†(qt)Kssp (x̂t − xt) +N(qt)Knsp g(qt), (19)
q̂t+1 = qt + ˆ̇qtdt. (20)

Equation 18 computes the pose of the end-effector at time t in function of the joint angles using the forward
kinematics. Then, Equation 19 computes the desired angular velocities of the joints and Equation 20 updates
the desired joint angles.

J† = J>(JJ>)−1 is the Moore-Penrose pseudo-inverse of the Jacobian. The Moore-Penrose pseudo-inverse
provides a least-square solution to a system of linear equations Jq̇ = ẋ. It aims to minimise the sum of squared
residuals ‖Jq̇ − ẋ‖2 with respect to the vector q̇. The damped pseudo-inverse provides a regularised least-
square solution to a system of linear equations and aims to minimise ‖Jq̇− ẋ‖2 +‖λI‖, where I ∈ Rmxm is the
identity matrix and λ is a scalar. In robotics, the term JJ> is small when the robot is close to a singularity and
thus, it is difficult to invert. Using the damped Moore-Penrose pseudo-inverse allows to avoid the singularities.
Thus, in Equation 19, the damped pseudo-inverse is used, so that J† = J>(JJ> +λI)−1, with λ a small factor.

In Equation 19, N(q̂t) is the null space (I −J†J) of the Jacobian and g(q̂t) is a function to optimise. Any
vector N(q̂t)g(q̂t) added to a vector of the solution space yields a new vector belonging to the solution space.

Kssp and Knsp are gains determining respectively the importance of the solution space term and of the null
space term.

5.4 Inverse Kinematics Computation to Draw with Baxter

To draw with Baxter, the Equations 18, 19 and 20 are used to compute the inverse kinematics, but they are
slightly adapted to serve this specific purpose. In the following equations, x′ is defined as the pose described
with Cartesian positions and quaternions (x, y, z, qx, qy, qz, qw)> and x is defined as the pose described with
Cartesian positions and Euler angles (x, y, z, φ, ψ, θ)>.

The trajectory points are obtained as described in Section 4. The trajectory point rX of Equation 11 can
also be described by x̂′t = (x̂, ŷ, ẑ, q̂x, q̂y, q̂z, q̂w)> by transforming the rotation matrix into a quaternion vector.

In order to follow the drawing trajectory x̂′d, the forwards kinematics are first used at each time step to
compute the pose at time t with

x′t = FK(qt). (21)
The difference ∆xt between the pose given by the trajectory and the current pose is then computed using

∆xt =
(

∆xpost

∆xort

)
=
(

(x̂, ŷ, ẑ)>t − (x, y, z)>t
v ((q̂x, q̂y, q̂z, q̂w)>t ((qx, qy, qz, qw)>t )−1)

)
, (22)

where v is the rotation vector computed from the quaternion q and q−1 is the inverse of a quaternion as
described at the beginning of the section.
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The first part of the matrix is the difference between the Cartesian positions of the two vectors and the
second part is the rotation vector obtained from the difference of the quaternions of the two vectors.

When one is drawing, the most important component of the pose is the position of the pen tip. The
orientation should be maintained, so that the pen tip can be in contact with the sheet. Moreover, small
variations around this vertical position can be considered without altering the drawing, and the pen can be
rotated around the vertical axis without any consequence on the drawing. Thus, the two last rows of the
Jacobian for the orientation and the two last components of the difference in orientation ∆xort are used to
compute the desired velocities.

The desired joint velocities are computed at time t while taking advantages of these information with
ˆ̇qt = J†pos(ẋposff +Kssp ∆xpost ) + (I − J†posJpos)((Jor,2,Jor,3)>)† Knsp (∆xort,2,∆xort,3)>. (23)

Thus, only the position of the end-effector is considered in the velocity component in solution space. The
feed-forward velocity ẋposff from

ẋposff = (x̂, ŷ, ẑ)>t − (x, y, z)>t
dt

(24)
is also added to this term. This feed-forward term allows to reduce the error faster and to keep it smaller than
a system relying only on feedback. Moreover, the row of the orientation Jacobian corresponding to the z-axis of
the end-effector is deleted in order that it remains free. Finally, the other orientation constraints are treated in
the velocity component of the null space, so that the orientation is maintained around the perfect orientation
perpendicular to the sheet.

The obtained desired joint velocities are then clamped, so that ‖ˆ̇qt,i‖ < q̇max. Finally, the desired joint
angles are updated using Equation 20.

5.5 Joints Control

5.5.1 Simple Velocity Controller

A velocity controller can be implemented for Baxter by giving a velocity command equal to ˆ̇qt obtained
with the inverse kinematics computation to the robot.

5.5.2 Velocity Controller with Adaptive Height

As the drawing plane may not be a perfect plane or may not be detected precisely enough, a controller that
adapts the height in function of the measured force between the end-effector and the sheet is designed.

At each time step, the forces rF = (rFx,
rFy,

rFz)> applied at the end-effector are measured by the robot
through the torque sensors at the joints by assuming a single contact point at the pen tip. They are given in
robot coordinates. As the sheet may not be aligned with the robot frame of reference, these forces are projected
into the drawing plane frame of reference with

oF = cM−1
o

rM−1
c

rF . (25)

A maximum and minimum forces oFmax
z and oFmin

z of contact are defined to draw, so that the pen tip lies
on the sheet by pressing against it with a reasonable force. Moreover, a maximum distance ∆zmax between the
current and initial positions along the z-axis of the drawing plane coordinates is selected. oFmax

z , oFmin
z and

∆zmax are selected empirically.
Algorithm 4 describes the update of the z-component of x̂t at time t in function of the projected force along

z-axis of the drawing plane frame of reference. It is important to note that the pen tip goes toward the drawing
plane if ẑ′ decreases (due to the orientation of the drawing plane frame of reference).

After the update of the trajectory point coordinates, the inverse kinematics are computed and the velocity
command ˆ̇qt is transmitted to the robot.
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Algorithm 4: Adjustment of the height of the pen tip in function of its contact force with the sheet
k a chosen gain;
ẑt the z-component of x̂t;
if oFz >

oFmax
z then

if ẑ0 − ẑt < ∆zmax then
ẑt − = k(oFz − oFmax

z )
end

else
if oFz <

oFmin
z then

if ẑt − ẑ0 < ∆zmax then
ẑt + = k(oFmin

z − oFz)
end

end

5.5.3 Torque Controller

The dynamical model of the robot is described by
τ = H(q)q̈ +C(q, q̇) +G(q), (26)

where H(q) is the inertia matrix of the robot, C(q, q̇) is the matrix due to Coriolis effect and centrifugal
force, G(q) is the gravity component, τ ∈ Rnx1 is the vector of torque applied to each joint and q, q̇, q̈ are
respectively the current positions, velocities and accelerations of the robot’s joints.

A torque controller was implemented with
τ = Kp(q̂t − qt)−Kvq̇t + J>(qt)F +G(q) with q̇t = qt − qt−1

dt
, (27)

where q̂t is the desired joint angles obtained by computing the inverse kinematics, qt are the joint angles
measured at time t, q̂t is the desired joint positions and q̇t are the computed current joint velocities. Kp and
Kv are gains.

With the above controller, the influence of Coriolis effect and centrifugal force C(q, q̇) in (26) is assumed to
be negligible. The inertia matrix H(q) computed with the model provided by Rethink Robotics is inaccurate
and cannot be used in practice. A related effect is achieved by adjusting the gains Kp and Kv for each joint
separately. The term J>(qt)F is used to add a small torque corresponding to a force at the end-effector toward
the drawing place, with F ∈ R6×1 a vector of forces and twists applied to the end-effector. A force pushing the
end-effector in the direction of the drawing plane is defined so that rF = rMo

oF with oF = (0, 0, Fz, 0, 0, 0)>.
Before being transmitted to the robot, the computed torques are clamped, so that ‖τt,i‖ < τmax.

Kp and Kv are set to diagonal matrices, with different gains for each joint. Namely, by reducing the gains
of the joints close to the end-effector compared to those of the other joints. This is necessary because the joints
that are far from the end-effector need to move their mass and the masses of all following joints, so that they
need higher torques for the same displacement.

The first part of Equation 27 acts similarly to a spring-damper system, where Kp would be the spring
constant and Kv the damping coefficient. Thus, the ratio ζ = Kv

2
√

Kp
determines the behaviour of the system. If

0 < ζ < 1, the system is underdamped, if ζ > 1, the system is overdamped and if ζ = 1, the system is critically
damped. A critically damped system converges to the desired value as fast as possible without oscillations. A
system ideally damped with ζ = 1√

2 converges to the desired value with the minimum integral of error over
time, that is the minimum total surface between the curve and the desired value. The different behaviours of
the system are shown by Figure 11.

For the drawing application, we would like to have the gains Kp and Kv in a proportion corresponding
to the behavior of an ideal damping ratio. In practice, setting the gains with an ideal damping ratio did not
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result in the behavior expected theoretically, due to external perturbations such as various forms of frictions
that are not modeled, as well as filters on the velocity signals whose characteristics are unknown. Thus, the
gains for each joint were determined separately by perturbing each joint of the Baxter’s arm by hand around
a desired pose, and adjusting the gains until each joint has the desired tracking behaviour for the application.

Figure 11: Behaviours of a damped mass-spring system.

The designed controller separates the computation of the inverse kinematics and the computation of the
torques and control the robot in joint space. An other possibility is to control the robot directly in operational
space. To make Baxter draw, the first option was chosen because the model of the inertia matrix is inaccurate
and cannot be used. Moreover, this allowed use to adjust the gains individually for each joint. Finally, the
computation of the inverse kinematics is the same for the velocity and the torque controller, so that both the
velocity and torque controllers provided by the robot could be used with the same implementation.

More information about the control of robots are given in [18, 19, 20].

6 Visual Feedback

6.1 Recovering the Performed Trajectory

During the reproduction of the trajectories by the robot, the current pose of the end-effector can be de-
termined by measuring the joint angles and convert them to a pose using the forward kinematics, so that
xt = FK(qt). The coordinates of these poses in the drawing plane frame of reference are then computed using

oX = rM−1
o

(
Rz(−π/2) 0

0 1

)
rX, (28)

corresponding to the inverse operation of Equation 11.
An image with this trajectory is then generated with the transformation

u = x/r + w/2
v = y/r + h/2

, (29)

corresponding to the inverse operation of Equation 10. A filled circle is drawn at each location (u, v)> on the
image. The image obtained is a reproduction of the drawing that should appear on the sheet in front of the
robot if the pen tip was correctly placed on the sheet during the whole drawing.

6.2 Projection and Processing of the Drawing

Once Baxter has finished to draw, a picture of the result is taken with the left hand camera. As the camera
is not perfectly in front of the drawing, the image is first projected to obtain an image of the drawing from a
front view. An example of this transformation is shown by Figure 12.
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(a) Image from the camera. (b) Projected image.

Figure 12: Transformation of the image taken by the camera into a front view image.

The projection is done with the functions getPerspectiveTransform and warpPerspective of OpenCV [15].
The first function computes a perspective transform from two sets of four points. The first set of points is
the 2D coordinates in the image (x, y)> of the four points used to compute the pose of the drawing plane in
Section 3. The second set of points is the desired positions of those four points in the transformed image. The
second function applies the perspective transform to the image.

After the projection, a threshold operation is applied. The pixels in a defined square at each corner of the
image are then set as equal to zero in order to remove the four dots used to determine the pose of the drawing
plane.

Figure 13 shows an example of the projection and processing of a drawing.

(a) Image from the camera. (b) Projected image. (c) Processed image.

Figure 13: Example of projection and processing of the final drawing.

6.3 Evaluation of the Dissimilarity between Expected, Planned and Drawn Strokes

The expected, planned and drawn images are then compared. The expected strokes correspond to the
picture that should be drawn by the robot. In order to have a constant contour width, a new image is
generated from the trajectory files using Equations 28 and 29. The planned strokes correspond to the image
drawn from the recovered trajectory and the drawn strokes are the final drawing that appears on the sheet.

The expected and planned images are compared to evaluate the reproduction of the desired trajectories by
Baxter. The expected and drawn images are compared to evaluate the contact between the pen tip and the
sheet.

First, a visual comparison of the image is done by observing the differences between them. Then, they are
compared with the function matchShapes of OpenCV. The similarity between two shapes is given by

e =
7∑

i=1
| 1
mA

i

− 1
mB

i

|. (30)

The lower the result, the better match between shapes A and B it is. Matching an image with itself gives a
result equal to 0. ms

i for shape s is computed by
ms

i = sign(hs
i ) log(hs

i ), (31)
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where hs
i is the ith Hu moment invariants. Hu moments are computed from the normalised central moments

of the image and are invariant with respect to translation, scale and orientation [21]. This comparison method
has been chosen because the goal of the robot is to reproduce the shape of the picture. It does not matter if
the drawing is a little bit shifted or rotated with respect to the original image.

7 Drawing’s steps

The tools described in the previous section are gathered to perform the drawing of an image with Baxter.
The steps of the drawing are described in Algorithm 5. Images are acquired with the left-hand camera and
Baxter’s right arm is used to draw. The initial pose of the robot is shown in Figure 14.

Figure 14: Initial pose of Baxter before the execution of the drawing.

Algorithm 5: Steps involved in drawing
-Baxter’s arm in initial pose;
do

-Acquire image with the left hand camera;
-Detect and track dots with desired features in the image;

while four dots not correctly tracked;
-Estimation of the pose of the drawing plane with the four dots;
-Compute the frame of reference of the drawing plane in robot coordinates;
-Generate the trajectories to be drawn from a given image;
for all drawing trajectories do

-Go to the first point of the drawing trajectory with Baxter’s right arm;
-Complete the drawing trajectory;
-Go to the final point, 5 cm above the last point of the current trajectory;

end
-Go back to the initial pose;
-Take a picture of the drawing;
-Generate a picture with the executed trajectory;
-Generate a picture with the desired trajectory;
-Compare the three images;

A trajectory between the current pose and the final desired pose is generated when the robot goes to the
initial or final point of the current trajectory. The trajectories are generated in order to avoid large pose errors
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that could lead to large torques or instabilities of the controller. Trajectory points are placed between the two
poses so that the difference between xi,t+1 and xi,t is smaller or equal to a predetermined maximum distance.

When the robot is tracking a trajectory, a reference point is given as desired pose at each time step. The
distance between two consecutive points is chosen to achieve a reasonable and natural drawing speed. The
ROS loop runs at 500 Hz. At each time step, the different lines of code are executed and if it takes less than
the loop cycle time, the system waits until it reaches this duration. This allows us to know precisely the time
between two executions of the loop, as one loop takes less than the allowed time to be executed.

8 Results

8.1 Drawing Realisation in Pictures

Figure 15 shows the estimation of the drawing plane made at the beginning of the drawing. The picture
was taken by Baxter’s left hand camera.

Figure 16 shows different steps of the drawing of a smiley face by Baxter.

Figure 15: Estimation of the drawing plane: x, y and z axis are red, green and blue.

(a) Estimation of the drawing
plane.

(b) Initial point of the trajectory
reached.

(c) Drawing of the external contour.

(d) Drawing of the mouth. (e) Drawing of the first eye. (f) Drawing completed.

Figure 16: Baxter drawing a smiley face.
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8.2 Evaluation of the Visual Estimation of the Drawing Plane

8.2.1 Estimation of the Reference

The goal is to obtain a precise estimation of the drawing plane, with the intervention of the user, that will
be used for further evaluation.

The pose of the drawing plane can be estimated by registering the position of the robot end-effector at three
different points of the plane and by computing the vectors corresponding to the axis of its frame of reference.
To do this, a torque controller compensating for the effect of gravity is used to move Baxter’s arms manually
to place the end-effector successively on the upper-left, upper-right, down-left black dots of the drawing plane.
The Cartesian position in robot’s coordinates is registered for each point. Figure 17 shows the disposition of
the three points and the drawing plane coordinates. p12 and p13 are defined as the vectors going from point 1
to 2, respectively 3.

Figure 17: Disposition of three points used to compute the drawing plane coordinates (x, y and z axis are
red, green and blue).

The homogeneous matrix rMo is then computed such that the columns of the rotation matrix R are the
basis vectors e1, e2, e3 given by

e1 = p12/‖p12‖
e2 = p13/‖p13‖
e3 = e1 ∧ e2

(32)

and t is the origin of the drawing plane coordinates in the robot frame of reference given by
rO = P2 + P3

2 . (33)

As the forward kinematics of the robot allows us to know precisely the Cartesian position of the end-effector,
one can consider that the precision of the measured points depends only on the precision of the user who placed
the end-effector on the plane. This estimation of the drawing plane will further be considered as the reference
(ground truth).

8.2.2 Haptic Estimation of the Drawing Plane

The goal of this estimation is to use three positions of the end-effector acquired without the intervention
of the user to estimate the pose of drawing plane and to compare it with the estimation of Section 3. As this
estimation uses the visual estimation of the drawing plane, it could be used to improve the computed pose.

After the estimation of the pose of the drawing plane with the four points, the following procedure is
successively done for the upper-left, upper-right, down-left black dots of the drawing plane. A trajectory is
computed from the current pose of the end-effector to the pose of the dot in the robot frame of reference. The
trajectory is completed using a torque controller. When the final point of the trajectory is reached, the desired
position along z-axis of the drawing plane coordinates is adapted using Algorithm 4 as in the velocity controller
with adaptive height. The goal of this adaptation is to use the measured forces to place the pen tip in contact
with the sheet with a reasonable pressure between the two objects. Thus, when the position is fixed, the pose
of the end-effector is registered.
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The maximum and minimum forces oFz between the pen tip and the sheet are respectively 5 N and 3.5 N.
The maximum distance ∆zmax between the current and initial positions along the z-axis of the drawing plane
coordinates is equal to 10 cm.

The three obtained positions are then used to compute the homogeneous matrix rMo with the same method
as for the estimation of the drawing plane with end-effector positions.

8.2.3 Evaluation of the Different Estimations of the Drawing Plane

The estimation of the reference is first evaluated to verify that the obtained drawing plane can indeed be
considered as ground truth. As the sheet is placed horizontally at a fixed height in front of the robot, the
following criteria are used to determine the reliability of the reference. The acute angle ∠(ngt,−ẑ) between
the normal vector of the plane ngt and the vector −ẑ opposed to z-axis of the robot coordinates is used to
determine if the plane is correctly estimated as horizontal. The variation of this angle and of the measured
height rz between several estimations is then measured.

Table 2 gives the mean and the standard deviation of the height rz and the angle ∠(ngt,−ẑ) over 5
estimations of the pose reference for the drawing plane. The standard deviation of the height is equal to 2.8
mm and the standard deviation of the angle is 0.49 deg. Both values are small, meaning that the estimation is
repeatable, and that our estimate for the reference is reliable.

Height rz [m] Angle ∠(−→ngt,−ẑ) [deg]
−0.20± 0.003 1.85± 0.49

Table 2: Mean and standard deviation of the height of the drawing plane and the angle between its normal
axis and the vertical axis.

Figure 18 shows a typical example of measured forces in robot coordinates and the same forces in drawing
plane coordinates. Due to the respective frames of reference of the robot and drawing plane, the z-forces are
inverted from one frame of reference to the second one.

The position of the pen tip along z-axis of the drawing plane is adapted for the three dots at times 5s, 12s
and 20s. The increasing, respectively decreasing, z-forces in robot and drawing plane coordinates show that
the pen tip goes down in direction of the sheet to reach the desired range of contact force. Thus, the pose
estimated visually seems to be higher than the ground truth.

Figure 19 shows a typical example of the three different estimations of the pose with the frame of reference
of each estimation. Table 3 compares the ground truth with the other estimations. r∆x, r∆y and r∆z are the
distance between the origin of the coordinates of the ground truth and the origin of the other estimation in
robot frame of reference. ∠(−→ngt,

−→n ) is the angle between the normal vector of the ground truth and the normal
vector other estimation. It is also the acute angle between the two estimated planes.

The visual estimation of the pose of the drawing plane is, as supposed, above the ground truth with a mean
distance of 33.9 mm. Thus, the robot needs to be controlled by a controller which allows to adapt the height of
the end-effector, like a velocity controller with adaptive height or a torque controller with an additional force,
as presented in Section 5. The estimated pose is also shifted along x and y-axis. However, those shifts do not
prevent the drawing as the shift along z-axis that can stop the contact between the pen tip and the sheet.
Thus, these shifts of 36.6 and 23.8 mm are acceptable. Moreover, the angle between the visual estimation and
the ground truth has a mean of 2.89 deg, so that the drawing plane remains estimated as a horizontal plane.
The standard deviation of the distances and angles between the visual estimation and the ground truth are
small, so that the visual estimation is considered as repeatable.

The distance between z-coordinates of the origin of the haptic estimation and the origin of the ground truth
is smaller than the same distance between the visual estimation and the ground truth. However, as one can
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Figure 18: Measured and projected forces applied on the end-effector during the haptic estimation of the pose
of the drawing plane.

see in Figure 19, the haptic estimation of the drawing plane is not horizontal and has an angle of 8.22 deg with
the reference. This difference can be explained by the fact that the measured forces may be imprecise as they
are influenced by the torques applied on the joints of the arm. For example, the forces can increase if the pose
of the arm is close to a singularity or close to the robot’s torso. The distances along x-axis are comparable to
the distances obtained with the visual estimation, but have a higher standard deviation. The distances along
y-axis are smaller than the distances obtained with the visual estimation.

Thus, the haptic estimation in this setup does not seem to provide much improvement over the visual
estimation, so that only the visual estimation of the drawing plane is used in the final setup, with a controller
that allows to adapt the height of the pen tip.

Figure 19: Estimated drawing planes with their frame of reference (x, y and z axis are red, green and blue).

Estimation r∆x [mm] r∆y [mm] r∆z [mm] ∠(−→ngt,
−→n ) [deg]

Haptic 28.0± 15.7 7.5± 4.7 9.7± 3.6 8.2166± 0.7784
Visual 36.6± 4.6 23.8± 6.3 33.9± 4.5 2.8913± 0.7841

Table 3: Comparison between the ground truth and haptic and visual estimations of the drawing plane. The
mean and standard deviation of the distances between the origin of their frames of reference and the acute

angle between their normal vectors are given.
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8.3 Evaluation of the Robot Controllers

8.3.1 Velocity Controller

The velocity controller with an adaptive height is tested with parameters oFmax
z = 5 N, oFmin

z = 3.5 N,
∆zmax = 10 cm and k = 3 · 10−5, where k is the gain for the adjustment of the height. The gains of the
inverse kinematics are set such that Kspp = Knsp = 100. The parameters have been adjusted empirically to
obtain natural drawing movements. The desired joint velocities are clamped with q̇max = 0.001.

Two different shapes, a rectangle (30× 15 cm) and a circle (�10 cm), are drawn at two different maximum
drawing speeds of respectively 0.1 m/s and 0.05 m/s for the rectangle, and 0.05 m/s and 0.025 m/s for the
circle. Theses speeds are higher for rectangles than for circles as the rectangles are bigger and composed only
of straight lines. The first point of the rectangles is defined as the upper-left corner. For the circles, it is the
leftmost point. Both shapes are then drawn clockwise.

Figures 20 and 21 show the different images obtained after the fast and slow drawings of a rectangle. The
mains differences between the expected and planned images are the accuracy of the formed angles at the corners
and the straightness of the strokes. The angles are rounded for both drawings. However, the strokes appear
straighter if the drawing is done faster. Both drawn images have a truncated left side, meaning that the pen
tip did not have a good contact with the sheet. This could be due to the error of estimation of the drawing
plane and to the latency of the controller to adapt the height of the end-effector. This latency is determined
by the gain k. If the gain is higher, the time for the end-effector to go upper or lower is reduced. However,
it can induce an oscillatory behaviour, where the end-effector goes down, hits the sheet with a high force and
then goes up again to keep the force under the minimum value to draw, and so on.

Figure 22 shows the position of each joint during the drawing of the rectangle. The desired positions of the
joints q̂t at each time step are the red curves and the positions qt are the blue curves. The shapes of the two
curves are similar during the whole drawing process, even if the position curve has often a small shift in time
compared to the desired position curve. For the slow drawing, the positions of joints 2 and 6 do not follow
precisely the desired position between t = 15 s and t = 20 s. This corresponds to the drawing of the lower-right
corner of the rectangle.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 20: Images obtained for the fast drawing of the rectangle with the velocity controller.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 21: Images obtained for the slow drawing of the rectangle with the velocity controller.

23



(a) Fast drawing. (b) Slow drawing.

Figure 22: Joints positions for the drawing of the rectangle with the velocity controller.

Figure 23 shows the forces applied at the end-effector during the drawing (in drawing plane coordinates).
The force along z-axis shows the contact between the pen tip and the sheet, indicating when the robot is
drawing. The two horizontal black lines are the maximum and minimum forces of contact oFmax

z and oFmin
z .

For the left and right plots, the robot draws respectively between t = 5 and t = 14 s, and between t = 8 and
t = 28 s. Before and after those time windows, the robot goes respectively to the first point of the trajectory
of the drawing and back to its initial position. The error in position of joints 2 and 6 between t = 15 s and
t = 20 s for the slow drawing of Figure 22 corresponds to a high force applied at the end-effector along z-axis
during this time window. This force is related to high absolute values of the forces along x and y-axis, meaning
that the pen tip is pressing too hard on the sheet, which may disturb the movement of the robot. A similar
behaviour is observed for the fast drawing for the time window during which the force along z-axis is above
maxoFz. In this case, as the force remains close to the limit, the drawing is less disturbed.

(a) Fast drawing. (b) Slow drawing.

Figure 23: Forces applied at the end-effector in drawing plane coordinates for the drawings of the rectangle
with the velocity controller.

Figure 24 shows the adaptation of the height of the end-effector in drawing plane coordinates in function
of the applied vertical force. Only the period for which the robot is drawing is represented in these graphs.

24



z = 0 is the desired height at the beginning of the trajectory. Thus, the end-effector of the robot has to be
1 to 6 cm lower than the estimated drawing plane in order to have the pen tip in contact with the sheet.
This corresponds to the estimation obtained in the previous section. For both drawings, the height is correctly
adapted in function of the vertical force. When the force along z-axis of the plots of Figure 23 is above or
under the limits, the height decreases so that the pen tip go further, and respectively increases when closer to
the sheet.

(a) Fast drawing. (b) Slow drawing.

Figure 24: Height of the pen tip in drawing plane coordinates for the drawings of the rectangle with the
velocity controller.

Figures 25 and 26 show the different images obtained after the fast and slow drawings of a circle. The
main difference between the expected and planned images are the roundness of the circle and the closing of
the contour. Indeed, the circles of the planned images are not closed. The circle drawn fast seems to be more
flattened than the circle drawn slowly. This can be explained by the latency of the controller that have not
enough time to go close to the current desired pose before it is updated during the execution of the trajectory
of the fast drawing. However, the effect of the latency is reduced for the slow drawing as two consecutive poses
are closer to each other. Both circles are composed of two strokes, meaning that the pen tip did not touch the
sheet in some parts of the drawing.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 25: Images obtained for the fast drawing of the circle with the velocity controller.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 26: Images obtained for the slow drawing of the circle with the velocity controller.

Figure 27 shows the position of each joint during the drawing of the circle. The desired positions of the
joints q̂t at each time step are the red curves and the positions qt are the blue curves. For the fast drawing, the
positions of joints 1 and 3 have a consequent error with respect to their desired position, in particular between
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time t = 4 and t = 6 s. It corresponds to the drawing of the low part of the circle, explaining its flattened
shape. The curves of positions and desired positions are similar to each other for the others joints. For the
slow drawing, there is no consequent error between desired and current position for each joint.

(a) Fast drawing. (b) Slow drawing.

Figure 27: Joints positions for the drawing of the circle with the velocity controller.

Figure 28 shows the forces applied at the end-effector during the drawing in drawing plane coordinates.
The two horizontal black lines are the maximum and minimum forces of contact oFmax

z and oFmin
z . For the left

and right plots, the robot draws respectively between t = 3 and t = 7 s, and between t = 5 and t = 13 s. As for
the drawing of rectangles, high forces along z-axis are associated with high absolute value of horizontal forces,
showing that the pen tip presses more on the sheet.

(a) Fast drawing. (b) Slow drawing.

Figure 28: Forces applied at the end-effector in drawing plane coordinates for the drawings of the circle with
the velocity controller.

Figure 29 shows the adaptation of the height of the end-effector in drawing plane coordinates in function
of the applied vertical force. Only the period for which the robot is drawing is represented in these graphs. As
for the drawing of rectangles, the pen tip has to be 1 to 6 cm lower than the estimated drawing plane in order
to be in contact with the sheet. For both drawings, the height is correctly adapted in function of the vertical
force. The height is increased of a few centimetres at the beginning of the drawing and does not vary much
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after this first rectification. This confirms that the orientation of the drawing plane is well estimated.

(a) Fast drawing. (b) Slow drawing.

Figure 29: Height of the pen tip in drawing plane coordinates for the drawings of the circle with the velocity
controller.

Table 4 shows the match values of Equation 30 from Section 6 between the expected and planned or drawn
strokes for the fast and slow drawings of the rectangle and the circle. Each shape was drawn three times. The
lower the match value is, the better match there is between the two shapes.

According to the match values for the drawing of the rectangle, the planned and drawn images are more
similar to the expected image if it is drawn fast. This may be due to the fact that the strokes appears straighter
if the rectangle is drawn fast. The variance of both match values are quite high for the rectangle drawn slowly.
This is due to the high match values of one of the three rectangle that was drawn in two strokes instead of one.

The match value between expected and planned circle is smaller if the circle is drawn slowly. This may
be due to the shape of the circle drawn fast that is more flattened than the circle drawn slowly. Moreover,
the contour of the circles drawn slowly are more completed. According to the match values between expected
and drawn images, the circle drawn slowly is also closer to the circle of reference. Visually, it also seems more
flattened than the same shape drawn slowly. The variance is high for the match values of the circles drawn
fast, meaning that the resulting image may be quite different between drawings.

Drawing match(expected, planned) match(expected, drawn)
Fast rectangle 8.98± 9.63 4.46± 0.97
Slow rectangle 19.53± 19.37 52.72± 68.69
Fast circle 24.03± 21.27 47.71± 42.24
Slow circle 0.98± 0.56 16.19± 7.30

Table 4: Matching of the planned and drawn shapes with the expected shapes for fast and slow drawings of a
rectangle and a circle with the velocity controller.

8.3.2 Torque Controller

The torque controller is tested with Fz = −4 N to push the end-effector in the direction of the drawing
plane. The gains Kp and Kv are given by

Kp =



98 0 0 0 0 0 0
0 42 0 0 0 0 0
0 0 42 0 0 0 0
0 0 0 35 0 0 0
0 0 0 0 16.8 0 0
0 0 0 0 0 11.2 0
0 0 0 0 0 0 5.6


, Kv =



84 0 0 0 0 0 0
0 14 0 0 0 0 0
0 0 28 0 0 0 0
0 0 0 28 0 0 0
0 0 0 0 10.5 0 0
0 0 0 0 0 9.1 0
0 0 0 0 0 0 2.8


. (34)

The gains of the inverse kinematics are set such that Kspp = Knsp = 100. The desired joint velocities are
clamped with q̇max = 0.001 rad/s and the commanded torques are clamped with τmax = 5 Nm. The parameters
have been adjusted by hand to have a good drawing. The gains Kp and Kv are set in order to have joints that
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are stiff enough to draw. The gains of the joints close to the end-effector have lower gains. Moreover, joint
2 has low gains. Since this joint mostly influences the movement of the end-effector in the vertical direction,
keeping it soft allows us to have a soft behaviour of the end-effector with respect to the sheet. If the desired
position of the end-effector is under the drawing plane, the pressure of the pen tip on the sheet is moderated
by joint 2 that will compensate and shift up with the pressure.

The same shapes as those drawn with the velocity controller are drawn with the torque controller with the
same maximum velocities.

Figures 30 and 31 show the different images obtained after the fast and slow drawings of a rectangle. The
sides of the planned and drawn rectangles of the fast drawing are inclined with respect to the expected image.
Thus, the corners are not right angles. This may be due to the latency of the controller. The position of
the end-effector is late with respect to its desired position, so that it has not the time to end drawing a side
of the rectangle before it is asked to follow the next one, resulting in uncompleted sides and wrong angles in
the rectangle. This effect is reduced if the maximum drawing velocity is decreased. Indeed, the angles of the
rectangle drawn slowly are closer to right angles. Moreover, the last side of the rectangle is truncated for both
maximum drawing velocities. It may be due to a high force between the pen tip and the sheet that disturb the
movement of the robot.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 30: Images obtained for the fast drawing of the rectangle with the torque controller.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 31: Images obtained for the slow drawing of the rectangle with the torque controller.

Figure 32 shows the position of each joint during the drawing of the rectangle. The desired positions of
the joints at each time step q̂t are the red curves and the positions qt are the blue curves. The shapes of the
two curves are similar for joints 1 to 5, even if the position curve is often slightly shifted in time compared to
the desired position curve. The position of two last joints have a consequent error with respect to the desired
position. It may be due to the fact that their gains were set in order to have stable joints while the robot was
not in contact with anything. Their behaviour may change and they may damped by the contact between the
pen tip and the sheet. However, their Kp were not augmented in order to keep a stable behaviour when the
pen tip does not touch the sheet. Despite its low stiffness, joint 2 is able to follow its desired position. The
shift in angle observed between the two curves show the adaptation of the angle in function of the force applied
on the end-effector.
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(a) Fast drawing. (b) Slow drawing.

Figure 32: Joints positions for the drawing of the rectangle with the torque controller.

Figure 33 shows the forces applied at the end-effector of the robot during the drawing (in drawing plane
coordinates). The absolute values of the forces along y and z-axis are higher than for the rest of the drawing
between t = 10 and t = 12 s for the fast drawing and between t = 24 to 25 s for the slow drawing. These
time windows correspond to the drawing of the left-down corner of the rectangle and explain the inaccuracy of
the drawing of the last side of the shape. The increase of forces may be due to the error of estimation of the
drawing plane or to the configuration of the robot’s arm when this corner of the rectangle is drawn that may
be close to a singularity. Moreover, the increase of the force along z-axis at the beginning of the drawing, t = 3
and t = 6 s for the fast and slow drawing, correspond to the first important shift in angle between the desired
and current joint positions of joint 2. This shows that the flexibility of this joint compared to the other and
the force applied down during the drawing allow to have a better contact between the pen tip and the sheet.

(a) Fast drawing. (b) Slow drawing.

Figure 33: Forces applied at the end-effector in drawing plane coordinates for the drawings of the rectangle
with the torque controller.

Figure 34 shows the torques applied to each joint during the drawing of the rectangle. The amplitude of
the torques of joints 1 to 6 are in the same range. Only the torque applied on joint 7 is smaller than the other
for both drawings. Moreover, the torques do not need to be clamped as their absolute value does not exceed
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τmax. One may observe that the torques have a similar shape for the fast and slow drawings, meaning that the
same joints are used to move the end-effector during the same parts of the rectangle. The slow drawing is only
stretched in time, allowing more time to follow the trajectory and improving the precision of the drawing.

(a) Fast drawing. (b) Slow drawing.

Figure 34: Torques applied to each joint for the drawing of the rectangle with the torque controller.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 35: Images obtained for the fast drawing of the circle with the torque controller.

(a) Expected image. (b) Planned image. (c) Drawn image.

Figure 36: Images obtained for the slow drawing of the circle with the torque controller.

Figures 35 and 36 show the different images obtained after the fast and slow drawings of a circle. The main
differences between the expected and planned images are the diameter and the roundness of the circle. This
may be explained by the latency and some inaccuracies of the controller. The position of the end-effector is
late with respect to its desired position so that the diameter of the circle is reduced. Moreover, the diameter
of the circle is more decreased for the fast drawing of the circle than for the slow drawing. The circles of the
drawn images are incomplete. For the fast drawing, only the first part of the circle is drawn and the pen tip
does not have any contact with the sheet afterwards. For the slow drawing, the circle is drawn in two stokes
and the pen tip stays in contact with the sheet at the end of the circle while to robot goes back to its initial
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pose. The fact that the pen tip does not stay in contact with the drawing plane may be due to the error of
estimation of the plane and to the force down that is not high enough to compensate this error for a short
drawing.

Figure 37 shows the position of each joint during the drawing of the circle. The desired positions of the
joints at each time step q̂t are the red curves and the positions qt are the blue curves. The error between the
position of the joints and their desired position is quite important for nearly all joints during the fast drawing.
This explains the inaccuracy of the drawn circle. For the slow drawing, the two curves are similar for joints 1
to 5. The errors for joints 6 and 7 are similar to the errors obtained during the drawing of the rectangle and
have the same cause. Similarly to the drawing of the rectangle, joint 2 is able to follow its desired position.

(a) Fast drawing. (b) Slow drawing.

Figure 37: Joints positions for the drawing of the circle with the torque controller.

(a) Fast drawing. (b) Slow drawing.

Figure 38: Forces applied at the end-effector in drawing plane coordinates for the drawings of the circle with
the torque controller.

Figure 38 shows the forces applied at the end-effector during the drawing in drawing plane coordinates.
Those plots confirm that the pen tip is not in contact with the sheet during parts of the drawing as the force
along z-axis is quite lower than the force obtained during the drawing of the rectangle. Thus, it is difficult to
determine the exact timing of the drawing. Moreover, the absolute values of the forces along x and y-axis are
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also low, meaning that there is low horizontal forces so that the pen tip is not always moving on the sheet.
Figure 39 shows the torques applied to each joint during the drawing of the circle. As for the drawing of

rectangles, the torques do not need to be clamped as their absolute value does not exceed τmax. Moreover,
they have a similar shape for the fast and slow drawings. Only joint 2 has quite different shapes of torques
between the two drawings. It may be due to the fact that the pen tip is more often in contact with the sheet
for the slow drawing than for the fast one.

(a) Fast drawing. (b) Slow drawing.

Figure 39: Torques applied to each joint for the drawing of the circle with the torque controller.

Table 5 shows the match values of Equation 30 from Section 6 between the expected and planned or drawn
strokes for the fast and slow drawings of the rectangle and the circle. Each shape was drawn three times. The
lower the match value is, the better match between two shapes it is.

Conversely to the drawing of the rectangle with the velocity controller, the match values indicate that the
planned and drawn images are more similar to the expected image if it is drawn slowly. This may be due to
the orientation of the small sides of the rectangle that are drawn in a diagonal direction if the shape is drawn
fast. The variances for both match values are also high for the rectangle drawn fast.

According to the match value, the planned and drawn images of the circle drawn fast is more similar to the
expected image than the same image drawn slowly. The fast drawing results visually in a smaller but rounder
circle than the slow drawing in the planned image. As the match value is computed with Hu moments invariant
to scaling, it is expected that the roundest circle is closer to the expected one. The variance of both match
values of the circle drawn slowly are high. This is due to the high match values of the circle of Figure 36 for
which horizontal line appears in the image. The line comes from the fact that the pen was still in contact with
the sheet when the robot was going back to its initial pose.

Drawing match(expected, planned) match(expected, drawn)
Fast rectangle 56.88± 72.62 15.13± 25.61
Slow rectangle 21.50± 12.33 2.64± 3.84
Fast circle 1.98± 1.50 2.33± 2.07
Slow circle 21.70± 21.58 15.61± 22.6

Table 5: Matching of the planned and drawn shapes with the expected shapes for fast and slow drawings of a
rectangle and a circle with the torque controller.
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8.3.3 Discussion and Comparison Between Controllers

The velocity controller obtain better match values if the rectangle is drawn fast. Conversely, the match
values of the torque controller are lower if the rectangle is drawn slowly. The match values between expected
and drawn images computed with the Hu moments are respectively 4.46±0.97 and 15.13±26.61 for the velocity
and torque controller drawing fast and 52.72±68.69 and 2.64±3.84 if the rectangle is drawn slowly. Moreover,
the rectangles drawn fast for the velocity controller and slowly for the torque controller are also visually the
most similar to the expected shape.

According to the match values, the inverse observation hold for the circle, as they are respectively equal
to 47.71 ± 42.24 and 2.33 ± 2.07 for the velocity and torque controller drawing fast and 16.19 ± 7.30 and
15.61 ± 22.6 for the circle drawn slowly. Indeed, visually, the circle drawn slowly by the velocity controller is
rounder than the one drawn fast. However, the circle drawn slowly by the torque controller is less truncated
and less shrunken than the one drawn fast, as the second one appears quite small. Thus, the circle drawn
slowly is preferred for both controllers.

The difference of performance in the drawing of the two shapes in function of the maximum velocity of
drawing may be explained by the characteristics of each shape. The rectangle has bigger dimensions than the
circle, that is 30× 15 cm against �10 cm. Moreover, it is composed of straight lines, as the circle is composed
of one round stroke. Thus, the latency of the controller results in angles that are not perfectly right, with
slightly truncated sides. As the sides are quite long, the modifications in the shape remain discrete. However,
the circle is shrunken and it is more visible as it has a small diameter. As the latency of the controller is more
and more visible while the shape is drawn faster, the circle needs to be drawn with a smaller maximum speed
than the rectangle. Thus, a maximum velocity equal to 0.1 m/s is good to draw the rectangle as a maximum
velocity of 0.025 m/s is preferred to draw the circle for both controllers. One can deduce that the smaller the
shape is, the smaller maximum velocity is needed to draw it.

According to the match values, the rectangle drawn fast with the velocity controller is more similar to the
expected rectangle than the one drawn with the torque controller. Moreover, visually, the size of the rectangle of
reference is better reproduced with the velocity controller. The circle drawn slowly with the velocity controller
are similar to the one drawn with the torque controller according to the match values. However, the circle
drawn with the velocity controller is visually closer to the expected shape, as the pen tip is not correctly in
contact with the sheet during an important part of the drawing with the torque controller.

In order to compare the performances of the controllers for more complex shapes and for a drawing composed
of several contours, a smiley face was drawn with the robot. The parameters of the controller were not changed.
The maximal drawing velocity was defined as 0.05 m/s for both drawings. The external and internal contours
are shown in Figure 40. The external contour consists in a circle of diameter of approximately 20 cm. There
are three internal contours, one for the mouth and two for the eyes. The three shapes are close to half-circles.
The resulting drawing of each controller are shown in Figure 41. In this case, the match values between the
expected and drawn images are respectively equal to 15.50 and 5.49 for the velocity and torque controller.

The smiley face drawn with the velocity controller has a quite round external contour drawn in one stroke
and the mouth is close to a half-circle. The eyes are drawn less accurately, but they have a size close to the
size of the model. The external contour drawn with the torque controller is less round than the other one. The
circle is smaller than expected, more flattened and drawn with two strokes. The mouth and the eyes are also
smaller than expected, but the half-circle shapes are recognisable. More generally, one can recognise the smiley
in both drawings, even if the one from the velocity is drawn globally with a better accuracy.

The drawing also shows that both controllers are efficient to adapt their height relatively to the drawing
plane to have a more or less constant contact between the pen tip and the sheet. Even if the torque controller
was not able to keep this contact during the whole drawing of the circle, it is here able to draw the smiley so
that it is similar to the reference and that one can recognise it. For both controllers, some parts of the contours
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(a) Smiley. (b) External contours. (c) Internal contours.

Figure 40: Image and contours to draw a smiley with Baxter.

(a) Velocity controller. (b) Torque controller.

Figure 41: Projected images drawn by the robot.

are not drawn because the pen tip does not push enough against the sheet and some part are drawn thicker
because of the inverse behaviour, but the majority of them are drawn correctly.

The main advantage of the velocity controller is that is it more accurate than the torque controller. However,
the torque controller may be as accurate if the inertia matrix was precisely known. The main advantage of
using a torque controller in joint space instead of a controller in operational space is that the gains of the joints
are easier to tune individually as the inertia matrix is not known precisely. The drawings done with a controller
in operational space with a precisely known inertia matrix may be better than those obtained with the actual
controller. Such controller would allow a spring behaviour to be simulated on the robot, so that it would be
stiff on the drawing plane, but soft in the perpendicular direction to this plane to obtain a constant contact
between the pen tip and the sheet.

9 Play Tic-Tac-Toe with Baxter

9.1 Game Description

Tic-tac-toe is a two-players game played on a 3× 3 grid. Each player plays his turn by marking one space
with his mark. The two different marks are a cross X and a circle O. The player who succeeds to place three
of his marks in the same row, column or diagonal wins the game.

Figure 42 shows an example of a complete game, where O won by filling a diagonal with his marks.
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Figure 42: Example of completed tic-tac-toe game [22].

9.2 Process of a Game with Baxter

The setup to play tic-tac-toe with Baxter is similar to the drawing setup described previously. A sheet with
four black dots is located in front of the robot which acquires images with the left hand camera and draw with
the right hand. The torque controller is used to control the robot with the same parameters as those used to
draw rectangles and circles.

A game with Baxter begins with the robot drawing the four lines composing the board. The robot performs
the drawing using the method described in Section 7. Then, the user is asked if he/she wants to be the first or
the second player and which of the two marks, a cross or a circle, he/she wants to play with.

When it is Baxter’s turn, its next move is first determined by the minimax algorithm that will be described
below. Then, the trajectory for a cross or a circle for Baxter’s move is generated. The coordinate system of the
sheet is computed using the four dots and Baxter draws its mark in the right space. When it is the opponent’s
turn, he/she can take the sheet, draw his/her mark where he/she wants to play and put the sheet back in front
of Baxter.

9.3 Choice of Baxter’s Next Move

9.3.1 Minimax Algorithm

The minimax recursive algorithm is used in decision theory and games theory. It aims to choose the next
move in a n-players game while minimising the possible loss for a worst case scenario. For two-players games,
each available move of the player who is playing is evaluated with the goal to pick the move with the maximum
score. The score for each move is determined by looking at each possibility for the opponent to play after this
move and by taking the move that minimises the score of the first player. The algorithm continues by flipping
from one player to the other until a final value is found.

The minimax algorithm is used to play a perfect game of tic-tac-toe, so that the robot wins or the result is
a draw. Figure 43 shows an example of the algorithm’s execution for a tic-tac-toe game. The score is defined
as equal to 10 if the robot wins, −10 if it loses and 0 if it draws. In state 1 of Figure 43, it is X’s turn to play.
It has three available moves, represented at states 2, 3 and 4 for which minimax algorithm is called. At state
2, X wins, so that the final score for this state is 10. States 3 and 4 generates respectively states 5 and 6 and
states 7 and 8 for which minimax is called. At states 5 and 7, O wins, so that the scores are −10. States 6
and 8 generate respectively states 9 an 10 for which X wins, so that the final score is 10. The final scores for
states 3 and 4 are the worse of their respective substates, that is −10 for both. Thus, state 2 is finally chosen
by the minimax algorithm as the next move for player X.

9.3.2 Implementation of the Minimax Algorithm

Algorithm 6 describes the implementation of the minimax algorithm for the tic-tac-toe game. The score is
equal to 10 if a row, a column or a diagonal of the board is filled by Baxter’s symbol. It is equal to −10 if a
row, a column or a diagonal of the board is filled by the opponent’s symbol. Otherwise, it is a draw and the
score is equal to 0.
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Figure 43: Example of minimax execution in a tic-tac-toe game [23].

9.4 Detection of The Opponent’s Move

9.4.1 Preprocessing of the Images

To detect the opponent’s move, two images are acquired respectively before and after the opponent plays.
Both images are first projected using the projection method of Section 6. Figure 44 shows an example of
original and projected images before and after the move of the opponent.

The absolute difference between the two projected images is then performed using the function absdiff of
OpenCV. A threshold operation is then applied to the resultant image with a threshold value equal to 130.
This value was chosen in order to keep only the evident differences between the projected images. Figure 45
shows an example of the absolute difference between the two projected images and the same image after the
thresholding operation.

9.4.2 Canny Edges Detection

The edges of the images are then detected using the Canny edge detector implemented in OpenCV. The
steps of this edge detection algorithm are presented by Figure 46. The image f is first filtered with a Gaussian
filter to remove the noise. Then, a pair of convolution masks h1 and h2 are applied to find the horizontal
and vertical derivatives g1 and g2. The gradient strength ‖g‖ and direction θ are computed and non-maxima
suppression is applied. Two threshold are then used to determine if a pixel is accepted as an edge or not. If
the pixel is above the upper threshold, it is accepted. If it is below the lower threshold, it is rejected. Finally,
if it is between the two thresholds, it is accepted only if it is connected to a pixel that is itself above the upper
threshold.

Figure 47 shows an example of the application of Canny detector on the thresholded image. The lower
threshold is equal to 100, the upper threshold is 300 and the size of the convolution masks is 3.
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Algorithm 6: Minimax
Empty list of scores;
Empty list of moves;
if game is over then

return score(game)
end
for each possible move do

Generate a new possible game;
(list of scores).pushback(minimax(possible game));
(list of moves).pushback(move);

end
if robot’s turn then

max score index = max(list of scores);
Chosen move = (list of moves)[max score index];
return (list of scores)[max score index]

end
else

min score index = min(list of scores);
Chosen move = (list of moves)[min score index];
return (list of scores)[min score index]

end

(a) Original image before the move. (b) Projected image before the move.

(c) Original image after the move. (d) Projected image after the move.

Figure 44: Original and projected images before and after the move of the opponent.
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(a) Absolute difference between projected
images.

(b) Image after threshold operation.

Figure 45: Images obtained after the absolute difference of the projected images before and after the
opponent move and after a thresholding operation.

Figure 46: Canny edge detection algorithm [24].

Figure 47: Image resulting from the application of the Canny edge detector on the thresholded image.

9.4.3 Contours Extraction and Sorting

The contours of the image are extracted using the function findContours of OpenCV. As the goal is to
find the location of the new cross X or circle O added by the opponent, only the contours having an area
between 900 and 3000 are kept. In this kind of images, only one contour corresponding to the mark added
by the opponent remains. If more than one contour remain, they are all contours of the symbol and are very
similar so that the first detected contour is kept. As most contours result from the difference between the rest
of the two projected images and thus, have a small area, it is guaranteed that a contour with an area between
900 and 2200 is the contour of a symbol. The area corresponding to the contour of a cross or a circle is large
enough to recognise a large range of them as the drawing of these symbols can change from one user to an
other. Moreover, the detection method is the same for both symbols as the user is expected to draw his/her
symbol. Figure 48 shows an example of the remaining contour.
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Figure 48: Contour sorted from the edges image.

9.4.4 Move Recognition

The spatial moments of the contour are computed with
mij =

∑
x

∑
y

xiyjI(x, y), (35)

where I(x, y) is the value of the pixel (x, y)> in the image. The centre of mass of the contours is given by
x = m10

m00
, y = m01

m00
. (36)

The location of the opponent’s move is determined as the space that contains the centre of mass of the
detected contour. For example, the contour of Figure 48 is located in the bottom-left space of the board.

9.5 Results

9.5.1 A Game Realisation in Pictures

Figure 49 shows an example of a game of tic-tac-toe between Baxter and the user. Figure 50 shows the
projected images of the steps of the game.

(a) Drawing of the board. (b) The user begins. (c) Baxter’s first move.

(d) Baxter’s second move. (e) User’s third move. (f) Baxter’s last move.

Figure 49: Steps of the tic-tac-toe game between Baxter and the user.
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Figure 50: Projected images of steps of a tic-tac-toe game.

9.5.2 Drawings of the Board

The board is drawn using the torque controller with the same maximum drawing velocity of 0.1 m/s as the
velocity defined to draw the rectangle. Baxter draws the board line by line. The two vertical lines are drawn
followed by the two horizontal ones. The drawings is done from top to bottom and from left to right.

Figure 51 shows the expected board and two examples of the board drawn by Baxter. The drawn images
were projected and a thresholding operation was applied. The match values between the expected and drawn
images for 6 drawn boards are 8.41, 3.02, 0.57, 2.42, 2.63 and 0.63, so that the mean and standard deviation
are 2.94± 2.87.

(a) Expected board. (b) Example of drawn board. (c) Example of drawn board.

Figure 51: Expected and examples of drawn boards of tic-tac-toe game.

Visually, the last part of the lines are not perfectly drawn by the robot. This effect is more important for
the vertical lines than for the horizontal ones. As for the drawing of the fast rectangle, this may be due to the
latency of the controller. Moreover, for the vertical lines, the vertical force between the pen tip and the sheet
is higher when the end effector is closer to the origin of the robot’s frame of reference. This may be related
to the pose of the robot and to close singularities which may disturb the movement of the robot. The match
values obtained are slightly higher than the value obtained for the rectangle drawn fast.

9.5.3 Drawing of the Symbols

The symbols are drawn using the torque controller with the same maximum drawing velocity of 0.025 m/s
as the velocity defined to draw circles slowly. Figures 52 and 53 show the expected symbols and two examples
of drawings for crosses and circles. The match values with the expected images were computed for 8 crosses
and 8 circles. The match values of the crosses are 4.52± 5.08 and those of the circles are 2.89± 1.18.

The drawn shapes tend to be smaller than the expected ones, as it was observed for the drawing of the
circle with the torque controller. The match values of the circles are also similar to those obtained for the fast
drawing of the circle. The match values of the crosses are slightly higher and the standard deviation is high so
that some crosses are really similar to the model and others are not.
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(a) Expected cross. (b) Example of drawn cross. (c) Example of drawn cross.

Figure 52: Expected and examples of drawn cross of tic-tac-toe game.

(a) Expected circle. (b) Example of drawn circle. (c) Example of drawn circle.

Figure 53: Expected and examples of drawn circles of tic-tac-toe game.

Figure 54 shows two images of the game where Baxter draws circles or crosses. One can observe that the
size of the symbols fits the size of the locations of the board. In this case, the crosses are located in the centre
of the squares, but the circles are slightly shifted in the direction of the right side of the locations. However,
all symbols are inside their respective squares of the board.

(a) Baxter draws crosses. (b) Baxter draws circles.

Figure 54: Examples of game states.

9.5.4 Recognition of the Opponent’s Move

A necessary condition to detect a symbol is that it is drawn big enough with thick strokes. Examples are
shown in Figure 54.

Figures 55 and 56 show examples of the detection of a cross and a circle drawn by the user. For these two
examples, the contours remaining after the edges detection are only those belonging to the symbol. For the
cross, the sorted contour corresponds to the top-left location (only the external contour of the circle is sorted).

Figures 57 and 58 show examples of the detection of a cross and a circle drawn by the user for which the
absolute difference between the projected image is noisier than for the previous examples. In this case, lots of
contours are detected by the Canny edge detector. However, only the contour of the symbol is sorted. Thus,
the detection of the symbol is efficient even if the two projected images are slightly shifted compared to each
other.
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(a) Absolute difference between
projected images.

(b) Edges detected. (c) Sorted contour.

Figure 55: Example of the detection of a cross drawn by the user.

(a) Absolute difference between
projected images.

(b) Edges detected. (c) Sorted contour.

Figure 56: Example of the detection of a circle drawn by the user.

(a) Absolute difference between
projected images.

(b) Edges detected. (c) Sorted contour.

Figure 57: Example of the detection of a cross drawn by the user with a noisy difference between projected
images.

(a) Absolute difference between
projected images.

(b) Edges detected. (c) Sorted contour.

Figure 58: Example of the detection of a circle drawn by the user with a noisy difference between projected
images.
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9.5.5 Discussion

The designed torque controller allows Baxter to play tic-tac-toe against the user. Even if the lines composing
the board are truncated, it is possible to see all the locations of the grid to play and draw at the right places.
Moreover, the symbols are easily recognisable as crosses or circles even if they are not totally identical to the
expected image. The method used to detect the user’s moves is efficient to locate the drawn symbol.

The passive and active compliances of the robot are an advantage for this kind of application, as it allows
the user to share safely the robot space. Thus, the opponent can stay close to the robot while it is drawing
its symbol. Moreover, the method used to project the drawing and identify the user’s moves allows the player
to move the sheet, in order to draw the symbol and put the sheet back in front of the robot. As the drawing
plane is detected before each movement of the robot, it is adapting to a new location of the drawing plane.

10 Conclusion and Future Work

Drawing capabilities have been implemented on Baxter robot. A method to detect the drawing plane was
implemented using one of Baxter’s camera and the open source library ViSP and compared with a precise
estimation obtained with the intervention of the user. Thus, the automatic estimation of the drawing plane
made the robot autonomous to draw. Trajectories were generated from pictures with simple shapes using
OpenCV functions. Moreover, two different controllers were designed and implemented so that the robot
followed the desired trajectories and reproduce the picture on a sheet. The controllers were tested for different
maximum drawing speed and for different simple shapes. The drawn images were then evaluated visually and
with the moment invariants of images. Finally, a tic-tac-toe game was implemented for which a human is
playing against Baxter.

The first observation being made is that the drawing plane is generally estimated a few centimetres higher
than it is accorded to the ground truth. Thus, the controllers were designed so that the height of the pen tip
relatively to the drawing plane could be adapted during the drawing. Second, both controllers were efficient to
adapt their height so that the pen tip remains most of the time in contact with the sheet. Moreover, both are
performing better if the shapes drawn are big enough. The images obtained with the velocity controller were
more accurate than those obtained with the torque controller. However, the images drawn by both controllers
were most of the time recognisable.

The torque controller was used to play tic-tac-toe with Baxter. The drawing of the board was also done by
the robot. Even if the end of the lines were truncated, it was usable for the user to play against the robot. The
crosses and circles drawn were corresponding to the expected symbols and the symbols drawn by the user were
identified and located on the board as long as they were drawn big enough with thick strokes. The compliance
of the robot and the torque controller were advantageous for this application as they allows the user to share
safely the workspace of the robot and to interact with it.

To improve the quality of the drawn images, the torque controller could be improved by computing precisely
the inertia matrix of the robot. In this case, a torque controller in operational space could be used instead of
the implemented controller in task space. Thus, a spring behaviour could be simulated by the robot, so that
the end-effector could be stiff on the drawing plane and soft in its perpendicular direction. Moreover, the robot
could correct the mistakes made during the drawing and complete the missing strokes. Thinking further, the
evaluation of the drawn image could be done online, using the robot’s camera to evaluate each strokes and
accordingly adjust Baxter’s movements. The accuracy of the shapes drawn may be improved and the contact
between the pen tip and the sheet may be more constant.

Noémie Jaquier,
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