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Abstract— Humans naturally execute many everyday ma-
nipulation actions with both arms simultaneously. Similarly,
endowing robots with bimanual manipulation task models is
key to efficiently perform complex manipulation tasks. To do so,
a promising approach is to learn a library of task models from
human demonstrations. However, this requires human motions
to be meaningfully segmented. In this paper, we propose to
segment the motion of each hand individually to account
for different bimanual coordination patterns and provide a
thorough evaluation of state-of-the-art segmentation algorithms
on bimanual manipulation datasets. In particular, we compare
segmentation algorithms at trajectory and semantic level with
hierarchical algorithms. Moreover, our evaluation extensively
studies the performances of various segmentation algorithms
over a novel extension of the KIT Bimanual Manipulation
Dataset featuring ∼176 minutes of human motion recordings
in household scenarios.

I. INTRODUCTION

Assistive robots providing help for humans in daily tasks
should be able to learn new skills in an intuitive way
and adapt them to new situations. Promising approaches
to achieve these goals are Learning from Demonstrations
(LfD) [1] and imitation learning. Humans execute many ev-
eryday actions with both arms simultaneously: Coordinating
both arms according to different bimanual strategies [2] al-
lows us to be more efficient and to accomplish more complex
tasks. For example, in various household tasks such as cutting
vegetables, the dominant hand performs the manipulation,
while the non-dominant hand stabilizes the object being acted
upon. Such tasks are significantly more difficult to perform
with a single hand. In this sense, considering bimanual
coordination and actions is key for robot manipulation [3].
However, learning bimanual manipulation task models from
human demonstrations presents additional challenges and
must be addressed at several levels, starting from approaches
that enable segmentation of bimanual human demonstrations
— both on semantic and on trajectory level.

Given a pre-existing skill library, the action segmenta-
tion problem can be reduced to a recognition problem [4].
However, creating a comprehensive library of skills or task
models initially requires the motion to be segmented. Such
segmentation can be achieved via (continuous) manual an-
notations [5], [6], via predefined heuristics [7]–[9], or via
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supervised [6], [10], weakly supervised [11] or unsuper-
vised [12], [13] learning. Although these approaches have
been extensively leveraged to segment unimanual and whole-
body trajectories, comprehensive evaluations in the context
of bimanual manipulation are still missing.

In this paper, we provide an extensive evaluation of state-
of-the-art segmentation algorithms in bimanual manipulation
scenarios (Section III). To do so, we propose to segment
the motion of each hand individually to account for the fact
that hands can execute uncoordinated actions, or coordinated
actions spread along different time intervals [2]. We consider
algorithms that segment motions (i) at trajectory level, (ii)
at semantic level, i.e., considering contact changes between
the human and objects, and (iii) by hierarchically combining
trajectory and semantic levels. When required, we adapt these
segmentation algorithms to consider bimanuality. As action
segmentation via manual annotations requires significant
manual efforts, and supervised learning approaches based
on, e.g., graph networks [6], [10], do not generalize well
to new environments or actions, we specifically focus on
heuristics and unsupervised methods. We thoroughly evaluate
and compare various segmentation algorithms on the human
motions of the KIT Bimanual Manipulation Dataset [5],
which contains 12 short bimanual household actions with
a large number of variations (Section V). To evaluate the
segmentation algorithms within more complex scenarios, we
additionally extend this dataset to include 90 recordings of
3 long bimanual manipulation household tasks composed
of sequences of the aforementioned manipulation actions
(Section IV). Our evaluation shows that all segmentation al-
gorithms generally display similar characteristics across short
and long sequences of actions, and across subjects. More-
over, it confirms the benefits of hierarchical segmentation
algorithms, while opening the door to further developments
in segmenting bimanual actions and learning bimanual task
models.

The contributions of this paper are twofold: (i) We
benchmark various heuristics and unsupervised segmentation
algorithms at trajectory and semantic levels, as well as
hierarchical segmentation algorithms on bimanual manip-
ulation actions and sequences thereof; and (ii) we extend
our KIT bimanual manipulation dataset [5] with recordings
of 90 annotated sequences of bimanual manipulation ac-
tions for six individuals. This extension is publicly avail-
able at https://motion-database.humanoids.kit.

edu/details/datasets/3521/. A video of the recorded
tasks and segmentation results accompanies the paper and is
available at https://youtu.be/VRccEiYhc-4.

https://motion-database.humanoids.kit.edu/details/datasets/3521/
https://motion-database.humanoids.kit.edu/details/datasets/3521/
https://youtu.be/VRccEiYhc-4


II. RELATED WORK

We first review segmentation approaches with a focus on
bimanual manipulation. To do so, we categorize the different
approaches into algorithms for (i) segmentation at trajectory
level, (ii) segmentation at semantic level, and (iii) hierarchic
segmentation which combines both. Unless otherwise spec-
ified, all presented approaches are unsupervised. We then
briefly discuss available human motion datasets.

A. Human Action Segmentation

Various motion segmentation algorithms at trajectory level
based on, e.g., zero-velocity crossings (ZVC) [7], princi-
pal component analysis [8], or frame-wise-similarities-based
clustering [14], were proposed in early literature. These
approaches have proven efficient in various applications and
have inspired more recent segmentation approaches. For
instance, Krüger et al. [15] proposed to consider transition
segments between actions based on self-similarity matrices.
The proposed algorithms allows the segmentation of cyclic
and non-cyclic activities and was evaluated for various input
modalities. Krishnan et al. [16] provided a segmentation
algorithm that leverages repeated demonstrations to cluster
segment endpoints and identify transition states. In contrast
to the approaches considered in this paper, this algorithm ex-
plicitly requires several demonstrations. Lioutikov et al. [17]
proposed to incrementally learn a segmentation and a skill li-
brary from demonstrations. An initial over-segmentation was
obtained by leveraging different ZVC-like heuristics per task.
Tsai et al. [18] proposed a segmentation algorithm for biman-
ual surgical tasks. Segmentation is achieved by clustering
potential segmentation points identified as local extrema and
ZVC points of the bimanual distance over time. The resulting
spatio-temporal segmentation is further complemented with
variance segmentation. Despite its consideration of biman-
uality, the aforementioned approach is tailored to specific
surgical motions. Klein et al. [19] proposed a segmentation
method on trajectory level based on Riemannian geometry,
which takes the inertial characteristics of the human body
into account. This approach was demonstrated for single-arm
gesticulation motions in [19] and is evaluated for bimanual
manipulation tasks along with ZVC and acceleration-based
segmentation in this paper.

Other approaches segment human motions at semantic
level. Ma et al. [20] segmented spatio-temporal end-effector
trajectories into fine-grained, fuzzy sequences of symbolic
vertical and horizontal movements and contacts. However,
the approach was mainly evaluated on human locomotion
and other whole-body motions. While the approach pre-
sented in [20] is tailored to whole-body motion, Wächter
et al. [21] proposed to segment human manipulation actions
semantically by detecting changes of relations between the
human hand and the objects. The authors then extended their
approach to a top-down hierarchical segmentation method
by introducing a trajectory level subsegmentation taking the
semantic segments as input [9]. The semantic segments,
obtained from contact relations between inflated 3D mesh
models, were further subdivided by finding key frames

maximizing the difference between Cartesian acceleration
profiles. This hierarchic segmentation was evaluated for 13
manipulation action sequences and achieved segmentation
closer to manual ground truth than baseline trajectory-level
methods. Aksoy et al. [22] first encoded the manipulation
task as Semantic Event Chain (SEC), which are patterns of
spatial relations between subjects and objects. The motions
were segmented based on specified spatial relation changes
and subsegmented at local extrema in Cartesian position
trajectories. The authors evaluated the action classification
based on semantic similarities on 70 partially-bimanual
motion capture demonstrations. While the two aforemen-
tioned approaches focus on a top-down hierarchy of levels,
Gutzeit [23] proposed a supervised bottom-up approach that
first segments motions in bell-shaped curves before merging
the segments based on the best action classification results
on all possible combinations. The approach was evaluated
on point-to-point movements and for each hand on dual-arm
rotation.

Overall, most of the aforementioned works do not explic-
itly account for bimanual manipulation actions. Instead, they
either consider only the movement of the dominant/active
hand in the segmentation, or consider both arms jointly in
whole-body segmentation. In this paper, we instead consider
each hand individually and evaluate some of the afore-
mentioned existing segmentation algorithms for segmenting
bimanual manipulation tasks into individual segments per
hand.

B. Human Motion Datasets

Various human motion datasets have been collected in
the literature in the close context of multi-modal bimanual
recordings of daily household and kitchen activities. Due to
the comparatively low cost, there is notably a plethora of
single-view video datasets featuring RGB or RGB-D data [6],
[24]. However, obtaining accurate data from RGB-D in nat-
ural scenarios with multiple, small, and potentially occluded
objects is still major area of research. Multi-view RGB-D
datasets offer more precise data considering both trajectory-
level motions and occurring contacts [25]. However, the most
precise and reliable motion data are provided by motion
capture systems. Available motion capture datasets such as
[26]–[28] either do not provide the precise information about
human and object motion, consider only isolated actions, or
do not deal with capturing bimanual manipulation actions.
We refer the interested reader to our previous work [5]
for a comprehensive review of datasets for household tasks
published before 2021. More recent motion capture datasets
either only consider pick and place tasks instead of complex
manipulation [29], hand interaction with a single articulated
object [30], very specific actions such as flipping food during
grilling [31], or capture only one arm precisely [32].

In contrast, our KIT Bimanual Manipulation Dataset [5]
provides precise recordings of human whole-body motions
for short bimanual manipulation household actions, e.g.,
symmetrically rolling dough with both hands or asymmet-
rically wiping a plate. Each action was executed by two



subjects with a large amount of variations, e.g., type of
objects, spatial relations or executed bimanual strategies.
This data offers an ideal basis for evaluating segmentation
algorithms independent of feature extraction methods such
as object and body tracking. In this paper, we address the
current limitations of this dataset, i.e., few subjects and short
and isolated tasks, by extending it with long manipulation
tasks executed by more subjects.

III. ACTION SEGMENTATION METHODS

In this section, we briefly describe the trajectory-level,
semantic-level, and hierarchical segmentation algorithms that
are applied on the Extended KIT Bimanual Manipulation
Dataset in Section V. Note that all algorithms are based
on previous works. The exact formulation, the parameter
variables, or the application, if different, is specified. All
methods perform segmentation of each human demonstration
independently, i.e., no inter-motion features are considered.

A. Trajectory Level Segmentation

In this paper, we consider three algorithms for segmenta-
tion at trajectory level. These algorithms are based on zero-
velocity crossing [7], acceleration profiles [9], and geodesic
segmentation [19], as explained next.

• Zero-Velocity Crossing (ZVC). Motions are segmented
when at least n ≤ N dimensions within a sliding
window of size t cross zero velocity [7]. Segments com-
posed of minor movements or oscillations are discarded
by ignoring zero-velocity crossings in a given dimension
if the average distance to the mean within the sliding
window is smaller than a threshold ∆µ.

• Acceleration Profile (ACC). Segmentation points are
extracted based on maximizing the difference of the
trajectory before and after a segmentation frame. This
is done in an iterative way where for each segment the
frame with the highest quality measure q̂best is selected
as an additional segmentation point if q̂best > λ and
the resulting segments have a size larger than lmin. The
heuristic for the quality measure is based on the acceler-
ations in all dimensions considering both their peak-to-
peak amplitude and the curve length approximated by
frame-wise differences. The quality measure at frame
i is computed based on a window [i − w

2 , i +
w
2 ]. The

precise definition of the heuristic can be found in [9].
• Geodesic (GEO). The human configuration space is

viewed as a Riemannian manifold endowed with the
kinetic-energy metric [19]. Human motions are piece-
wise geodesic with respect to this manifold and motions
are segmented at transitions between geodesics. A tran-
sition is detected if the angle θ between the current
velocity q̇t and the parallel-transported initial velocity
of the segment is larger than a threshold ∆θ. Note that
we disregard segmentation points for which ||q̇t|| < ∆q̇

as they correspond to minor oscillations in the motion.
Notice that ZVC and GEO tend to over-segment the mo-

tion. Therefore, we further filter the final segmentation points
as follows. Successive segmentation points are combined into

an interval I = [a, b] if the point-to-point time difference
is smaller than a threshold ∆s. We consider the interval
boundaries a and b as segmentation points if b − a > ∆w,
and otherwise a mean segmentation point c = a+b

2 .

B. Semantic Level Segmentation

Semantic segmentation algorithms such as [9], [22] deter-
mine segments based on changes of spatial relations between
the human and objects in the environment. Such segments are
thus intrinsically endowed with a semantic interpretation. In
this paper, we consider the semantic segmentation approach
of [9] and extend it to bimanual manipulation actions. To
handle bimanuality, each contact occurring in the scene,
i.e., each segmentation point, needs to be assigned to one
of the hands. To solve this problem, we propose to first
determine the grasped object based on the contact relation,
so that grasping or releasing an object adds a segmentation
point for the corresponding hand. The object in each hand
is determined by contact using a distance threshold ∆ho.
Notice that we only consider contacts between the hand and
manipulation objects, but ignore contacts with the environ-
ment or with the other hand. Moreover, in order to filter out
small inaccuracies, changes in contact relations are ignored
if they occur only for less than a threshold ∆c. An additional
distance threshold ∆oo is used to detect changes in object-
object contact relations. Moreover, in order to only consider
the most relevant contacts, we count the number of objects
that are in contact with the grasped object and only add a
segmentation point if the number of contact relation changes
to exactly zero or one.

C. Hierarchic Segmentation

While semantic segmentation ensures to produce some-
what meaningful segments, it lacks the granularity to ex-
tract all essential parts of a task. Hierarchical segmentation
methods tackle this issue by applying a trajectory level
subsegmentation on segments extracted by semantic meth-
ods. In this paper, we evaluate the hierarchical segmentation
algorithm of [9], whose upper level leverages the semantic
segmentation summarized in Section III-B. For an extensive
evaluation, we consider the different trajectory-level segmen-
tations presented in Section III-A for the lower level.

IV. EXTENDED KIT BIMANUAL MANIPULATION
DATASET

This paper aims at evaluating the action segmentation
methods described in Section III on bimanual manipulation
tasks in household scenarios. To do so, we leverage our
recently-published KIT Bimanual Manipulation Dataset [5],
which offers multi-modal recordings of isolated household
actions with a high variance in their execution. The dataset
includes two subjects and rather short, scripted recordings.
However, handling inter-subject variations and transitions
between different actions are major challenges in action
segmentation. Thus, such variations and transitions should
be considered when comparing segmentation algorithms.
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Fig. 1: Setup and positions of the cameras.

In this section, we extend the KIT Bimanual Manipulation
Dataset with recordings of the same two and four more sub-
jects performing sequences of the same bimanual household
actions in randomized scenes. An overview of the type and
number actions in both datasets is given by Table I. For
comparability, we maintained the same multi-modal sensor
setup and objects as in [5]. The extended dataset results in
about 176 minutes of recorded motions. This study was ap-
proved by the ethics committee of the Karlsruhe Institute of
Technology, Karlsruhe, Germany. The participants gave their
written informed consent before the experiments that the data
may be made publicly available for research purposes in the
KIT Whole-Body Human Motion Database [33].

A. Setup and Recording Procedure

As in our previous work [5], the bimanual human motions
are captured by means of an optical motion capture system,
two data gloves, three inertial measurement units, three
RGB-D cameras, and an egocentric RGB camera. Our sensor
setup is visualized in Figure 1. While the same objects as
for the previous dataset are used, an extra table is added
to the scene, providing more space for manipulation and
at the same time forming a kitchen corner. The positions
of the digital video, RGB-D, and motion capture cameras
were slightly adjusted to accommodate this change. Each
recording begins with the subject standing in a T-pose about
one to two meters from the tables (see Figure 2).

Six healthy, right-handed1 subjects (three male, three fe-
male) performed sequences of manipulation actions within
three daily household scenarios, namely preparing a meal,
preparing a pie and cleaning up. While the subjects were
informed about the overall goal to achieve, the execution of
the actions and their order was left to their own discretion.
More information about the scenarios can be found in
the description of the recordings in our motion database.
Altogether, each subject repeated every scenario five times,
resulting in 90 recordings for a total of about 104 minutes.
After each repetition, the positions of objects on and next to
the table were randomly changed by the instructor. Figure 2
shows an exemplary scene for preparing a meal.

1Data from left-handed subjects will be collected as future work.

Fig. 2: Subject in T-pose in front of a random scene for the
task preparing a meal.

B. Mapping and Representation

The recorded multi-modal sensor data is converted to the
Master Motor Map (MMM) data format [33] which is a
unified representation for whole-body human motion data.
Thereby, the marker-based motion capture is mapped to the
MMM reference model -— a reference model of the human
body including statistical, kinematic, and dynamic properties
-— and to modelled or 3D-scanned mesh models [5] of
all objects. The mapping is achieved by minimizing the
error between recorded and virtual marker positions obtained
on the model with forward kinematics [33]. This is solved
using a sequential quadratic programming optimization via
NLopt [34] including additional criteria inspired by [35] to
reduce the joint velocity, acceleration, and jerk [19]. For each
frame, we can then retrieve the joint configuration of the
human body, the 6D pose of the human root and of objects,
as well as the 6D pose of any segment (e.g., the hand) via
forward kinematics.

C. Bimanual Segmentation and Annotation

The data is manually segmented and annotated for each
hand as for the previous dataset. As shown in Table I,
these annotations include manipulation phases (approach,
lift, place, retreat), supporting actions (hold, move), and
manipulation actions (e.g., cut, stir), which are further
subsegmented. Two new action labels were added in the
extended dataset, namely regrasping an object and shaking,
e.g., the whisk after stirring. Moreover, actions were further
annotated with failure cases, i.e., the drop and slip of an
object, as well as planning failures, which happened when an
action was partially performed before the intent was changed,
or when an incorrect action was accidentally performed, e.g.,
turning the lid in the wrong direction when opening/closing
a bottle.

V. EVALUATION

In this section, we evaluate the segmentation algorithms
described in Section III on the KIT Bimanual Manipulation
Dataset [5] and its extension presented in Section IV.

A. Data Processing and Parameter Selection

We apply the segmentation algorithms on the precise hu-
man kinematic and 6D object pose data obtained via motion
capture. Although the algorithms could also be executed on



TABLE I: Manually-segmented actions of the Extended KIT
Bimanual Manipulation Dataset. The top level refers to
manipulation phases, supporting, and manipulation actions
and the bottom level corresponds to subsegmentation thereof.

Level Top Bottom
Dataset Original [5] Extension Original [5] Extension
Hand Left Right Left Right Left Right Left Right

G
ra

sp
/

Su
pp

or
t Approach 615 599 557 597 0 0 0 0

Hold 486 123 477 270 0 0 4 1
Lift 446 464 350 318 0 8 0 0
Move 181 73 320 238 175 325 442 880
Place 502 537 447 476 0 0 0 0
Regrasp 0 0 92 47 0 0 0 0
Retreat 665 628 530 558 0 0 0 0

M
an

ip
ul

at
io

n

Close 36 0 37 14 84 0 102 66
Cut 0 42 0 31 0 126 0 117
Mix 18 18 33 33 54 54 145 146
Open 24 0 33 32 51 0 120 102
Peel 0 12 0 57 0 36 0 312
Pour 18 83 30 54 18 177 33 114
RollOut 25 24 65 65 109 109 361 361
Scoop 18 113 31 90 18 113 31 90
Shake 0 0 2 42 0 0 0 0
Stir 0 78 0 32 0 235 0 317
Sweep 30 30 33 33 90 90 162 162
Transfer 0 72 6 85 18 90 32 112
Wipe 0 54 3 74 0 190 15 544

noisy data or data from other data sources, considering pre-
cise motion data avoids evaluating the approaches based on
the underlying feature extraction method, e.g., in the context
of vision models. The velocities and accelerations of the
joints and hands are computed as the analytical derivatives
of a second-order approximation of the joint angles over
time obtained with a Savitzky–Golay filter (window-length
of 21 samples and order 3). Contacts are computed between
inflated 3D mesh models of the human hand and objects.
Specifically, the human palm and proximal and intermediate
phalanges of the index finger and thumb are considered for
contacts. For hollow objects, e.g. cups and bowls, the convex
hull is used as collision model.

Many segmentation heuristics can be applied on trajec-
tories in either task space or joint space. For a thorough
comparison, we apply ZVC and ACC on (i) the Cartesian
positions of the tool center of each hand (hereinafter denoted
as ZVCx, ACCx), and (ii) the 7 joint angles of each arm
(denoted as ZVCq , ACCq). The parameters of the different
segmentation algorithms are fixed via a grid search on a
subset of 12 recordings of different actions of the same
subject from [5]. For trajectory-level segmentation, we retain
the parameters maximizing the F1 score. For semantic-
level, we select parameters that lead to high precision,
since a higher level segmentation should find meaningful
segmentation points. Table III shows the different segmen-
tation methods used for our evaluation along with their
corresponding optimized parameters. The computation of the
aforementioned evaluation metrics (F1 score and precision)
is detailed next.

B. Evaluation Metric

We evaluate the quality of the considered segmentation
algorithms both qualitatively and quantitatively in terms

TABLE II: Segmentation algorithms with their parameters.

Name Parameters

ACCq lmin = 250ms λ = 5 w = 400ms z = 0.5
ACCx lmin = 300ms λ = 1 w = 250ms z = 0.5
GEO ∆θ = 0.8 ∆q̇ = 0.3
ZVCq n = 2 ∆µ = 0.005 t = 200ms
ZVCx n = 1 ∆µ = 0.001 t = 200ms

SEM ∆ho = 0.01m ∆oo = 0.005m ∆c = 50ms

H-ACCq lmin = 250ms λ = 10 w = 350ms z = 0.5
H-ACCx lmin = 350ms λ = 5 w = 200ms z = 0.5
H-GEO ∆θ = 0.8 ∆q̇ = 0.3
H-ZVCq n = 1 ∆µ = 0.02 t = 250ms
H-ZVCx n = 1 ∆µ = 0.01 t = 250ms

All ∆s = 50ms ∆w = 300ms

of precision, recall, and F1 scores. To do so, the manual
annotations provided along with the dataset (see Section IV-
C) are considered as ground truth. We leverage the Integrated
Kernel (InK) approach [36] to meaningfully compute the
aforementioned quantitative quality measures, while taking
temporal distances into account. Namely, InK computes
the amount of true/false positives/negatives based on the
integrals of two segmentation functions of opposed sign,
which represent the segmentation points of the ground truth
and evaluated segmentation with kernel functions. Here,
we choose a Gaussian kernel function with a variance
σ = 111.11ms, so that about 99.7% of the area of the
Gaussian distribution lies in the range of ±3σ = 333ms.
For our evaluation, we merge the two granularity levels of
segmentation of the manual annotations to a single level of
segmentation.

C. Results

Figure 3 shows the segmentation points obtained by dif-
ferent segmentation algorithms for each hand along the wipe
action within the cleaning up task. For clarity of presenta-
tion, we only display three trajectory-level (ACCx, GEO,
ZVCx) and three hierarchical (H-ACCx,H-GEO,H-ZVCx)
segmentation algorithms. We observe that ZVCx and to some
extent ACCx fail to identify many segmentation points given
by the manual annotations and result in few false positive,
i.e., segmentation points that were not manually annotated.
Instead, GEO matches almost all manual segmentation points
at the expense of generating more false positive. This can be
explained by the fact that the geodesic segmentation explic-
itly consider the dynamics underlying human motions. In
other words, each manually-annotated segment corresponds
to a dynamic motion that is naturally identified with a
sequence of simple dynamic motion units detected via GEO.
Therefore, GEO consistently segments motions at a lower
level than the manual annotations. Table III presents a quan-
titative evaluation of the different segmentation algorithms.
In accordance with Figure 3, ZVC and ACC result in similar
precision and recall with slightly higher scores for ACC.
Moreover, GEO reaches a high recall at the expense of a
low precision due to its natural tendency to over-segment
the motion in comparison to the manual annotations.



(a) Left hand segmentations (b) Right hand segmentations (c) t = {9.5, 10}s

Fig. 3: Bimanual segmentation for the wipe action within the cleaning up task for the subject 1480. (a)-(b) Comparisons of
the segmentation points ( ) obtained with different algorithms. The manual annotations of the dataset ( ) are considered
as ground truth. The top panels differentiate between the semantic segmentation ( ) and the trajectory subsegmentation
ACCx ( ) of the hierarchical segmentation H-ACCx. The hand trajectories (x1 , x2 , x3 ) and the distances between
the hand and (a) the cutting board or (b) the sponge ( ) and between the sponge and the cutting board ( ) are also
depicted. (c) Snapshots of the task mapped onto the MMM model.

(a) Left hand segmentation for subject 1723 (b) Left hand segmentation for subject 1747 (c) {46.5, 67.5}s

Fig. 4: Bimanual segmentation for the rollout action within the preparing a pie task for the two different subjects. r and
m denotes rollout and move actions throughout the task, respectively. (a)-(b) Comparisons of the segmentation points ( )
obtained with different algorithms. The manual annotations of the dataset ( ) are considered as ground truth. The top
panels differentiate between the semantic segmentation ( ) and the trajectory subsegmentation ( ) of the hierarchical
segmentation H-ACCx. The hand trajectories (x1 , x2 , x3 ) and the distances between the hand and the rolling pin
( ) and between the rolling pin and the table ( ) are also depicted. (c) Snapshots of the task mapped onto the MMM
model. The top and bottom models display the motion of subject 1723 and 1747, respectively.

As shown in the top panel of Figure 3, the semantic
segmentation (SEM) successfully distinguishes the start and
end of the successive wiping motions via the contact changes.
This is also observed in Table III as SEM results in the high-
est precision score. Notice that this is the desired behavior for
the high level of a hierarchical segmentation. In general, the
subsegmentations of the hierarchical approaches H-ACCx,
H-GEO, H-ZVCx behave similarly as the corresponding
algorithms when used at trajectory levels. Namely, H-ACCx,
H-ZVCx still fail to identify some segmentation points, while
H-GEO segments motions at a lower level than the manual

annotation. However, the identified segmentation points are
not always identical, especially for H-ACCx vs ACCx and
H-ZVCx vs ZVCx. Moreover, all algorithms segment the
successive wiping actions similarly for the dominant (right)
and non-dominant (left) hand, although the wiping was
primarily achieved with the dominant hand. This is explained
by the fact that the non-dominant hand still performed subtle
circular motions while holding the cutting board. Notice
that this issue arises for various asymmetric motions, for
which the supporting actions of the non-dominant hand were
annotated as a single hold action. This is also observed in



TABLE III: Evaluation of segmentation algorithms on the Extended KIT Bimanual Manipulation Dataset. The manual
annotations provided in the dataset are considered as ground truth.
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] F1
Right 0.54 0.55 0.40 0.46 0.47 0.42 0.54 0.53 0.37 0.44 0.46
Left 0.48 0.48 0.34 0.41 0.44 0.37 0.46 0.46 0.32 0.39 0.39

Precision
Right 0.41 0.44 0.26 0.35 0.36 0.52 0.41 0.45 0.23 0.31 0.37
Left 0.34 0.36 0.21 0.29 0.32 0.42 0.33 0.37 0.19 0.26 0.30

Recall
Right 0.80 0.72 0.90 0.65 0.66 0.36 0.81 0.66 0.93 0.73 0.60
Left 0.79 0.71 0.88 0.69 0.73 0.34 0.79 0.62 0.91 0.74 0.55

E
xt

en
si

on

F1
Right 0.54 0.55 0.46 0.39 0.39 0.44 0.54 0.54 0.40 0.45 0.49
Left 0.40 0.41 0.31 0.30 0.31 0.39 0.41 0.41 0.28 0.34 0.42

Precision
Right 0.46 0.48 0.30 0.33 0.33 0.52 0.44 0.48 0.25 0.33 0.40
Left 0.28 0.30 0.18 0.21 0.21 0.39 0.28 0.32 0.17 0.23 0.31

Recall
Right 0.67 0.64 0.92 0.50 0.48 0.38 0.73 0.63 0.94 0.70 0.63
Left 0.66 0.63 0.89 0.55 0.60 0.39 0.71 0.57 0.93 0.68 0.68

Table III, where the precision and F1 score of the dominant,
i.e., right2, hand are higher than for the non-dominant one.

Figure 4 shows the segmentation points obtained for
two different subjects during the rollout action within the
preparing a pie task. As opposed to the asymmetric wipe
action, both hands synchronously perform the same motions
during rollout and we only display the left hand segmen-
tation. We observe that all approaches generally display
similar characteristics as in Figure 3, thus demonstrating
consistency throughout different actions. Moreover, Table III
shows that the different segmentation algorithms achieve
consistent performances on both the original dataset [5]
and its extension (Section IV). Importantly, we also observe
consistent behavior of the different segmentation approaches
across subjects (see Figure 4a vs Figure 4b). During the
rollout action, SEM sometimes overlooks the manually-
annotated segmentation points. This is due to the fact that
contacts between the rolling pin and the table are not detected
when the dough is too thick. However, these segments are
recovered by the segmentation at trajectory level and thus by
the subsegmentation of the hierarchical algorithms.

Overall, we observe that the hierarchical segmenta-
tion benefits from the semantic segmentation, which often
matches the manual annotations. Therefore, we generally ob-
serve a slight increase in the recall of hierarchical algorithms
compared to their trajectory-level counterpart. Interestingly,
all segmentation approaches achieve similar F1, precision
and recall scores on both datasets. Finally, we observe only
minor differences on the performances of the ACC and ZVC
when applied at the hand position or at the joint trajectory
level.

VI. DISCUSSION

This paper presented a detailed evaluation of various
segmentation algorithms at trajectory and semantic levels,
as well as hierarchical segmentation algorithms on bimanual
manipulation tasks. To handle bimanuality, we proposed to
segment the motion of each hand individually, and extended

2All subjects recorded within the extended dataset are right-handed.

a semantic segmentation approach used within hierarchical
algorithms to handle bimanual actions. All algorithms were
evaluated on the KIT Bimanual Manipulation Dataset [5],
which was further extended in this paper to include long
bimanual manipulation tasks recorded with various subjects.

Our evaluation showed that the considered segmentation
algorithms display similar characteristics across short and
long sequences of actions, and subjects. Moreover, it con-
firmed that hierarchical segmentation algorithms benefit from
the segmentation at semantic and trajectory level to generate
meaningful segmentation accounting for additional variations
within hand or joint trajectories. In addition, we believe
that geodesic (sub)segmentation presents several advantages
compared to the widely-used (sub)segmentation based on
ZVC and acceleration profiles. As it intrinsically account
for the dynamic properties of the human body, the resulting
segments correspond to intrinsic human motion units, which
may later be leveraged to built human-like libraries of
dynamic primitives.

Importantly, our evaluation suggests that taking the role of
the hands into account would be beneficial when segmenting
bimanual manipulation tasks, especially when hands have
asymmetric and possibly varying roles throughout the task. In
particular, we believe that rule-based approaches such as [2]
may be combined with segmentation algorithms to infer the
role of the hands and adapt the parameters of trajectory-level
(sub)segmentation accordingly. We plan to investigate such
algorithms in our future work.

It is important to emphasize that inaccuracies may occur
in the manual annotations, which lead to a decrease of the
quantitative performance achieved by the different segmen-
tation methods. For instance, the semantic segmentation was
often slightly shifted compared to the manual annotations
in Figure 4. Moreover, our evaluation was conducted on
motion capture data with relatively low noise, except for the
motion and mesh of the manipulated real food items, e.g.
cucumber or eggplant, which could only be reconstructed
semi-accurately. Noisy setups may require adaptation on
segmentation approaches, as well as additional evaluations.

Overall, bimanual action segmentation is the first step



towards building libraries of bimanual movement primitives
and learning task models for bimanual manipulation. Con-
structing such libraries and task models still remains a large
research topic. As future work, we plan to tackle some of
these challenges by representing extracted motion segments
with suitable uni- and bimanual motion representations.
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[6] C. R. G. Dreher, M. Wächter, and T. Asfour, “Learning object-action
relations from bimanual human demonstration using graph networks,”
IEEE Robotics and Automation Letters, vol. 5, no. 1, pp. 187–194,
2020.

[7] A. Fod, M. Mataric, and O. Jenkins, “Automated derivation of prim-
itives for movement classification,” Autonomous Robots, vol. 12, pp.
39–54, 2003.
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[33] C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, and T. As-
four, “Unifying representations and large-scale whole-body motion
databases for studying human motion,” IEEE Trans. on Robotics,
vol. 32, no. 4, pp. 796–809, 2016.

[34] S. G. Johnson, The NLopt nonlinear-optimization package, 2011.
[Online]. Available: http://ab-initio.mit.edu/nlopt

[35] D. Rakita, B. Mutlu, and M. Gleicher, “RelaxedIK: Real-time synthesis
of accurate and feasible robot arm motion,” in Robotics: Science and
Systems (R:SS), 2018.

[36] C. R. G. Dreher, N. Kulp, C. Mandery, M. Wächter, and T. Asfour,
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