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Abstract— The generation of energy-efficient and dynamic-
aware robot motions that satisfy constraints such as joint limits,
self-collisions, and collisions with the environment remains a
challenge. In this context, Riemannian geometry offers promis-
ing solutions by identifying robot motions with geodesics on
the so-called configuration space manifold. While this manifold
naturally considers the intrinsic robot dynamics, constraints
such as joint limits, self-collisions, and collisions with the
environment remain overlooked. In this paper, we propose a
modification of the Riemannian metric of the configuration
space manifold allowing for the generation of robot motions
as geodesics that efficiently avoid given regions. We introduce
a class of Riemannian metrics based on barrier functions that
guarantee strict region avoidance by systematically generating
accelerations away from no-go regions in joint and task space.
We evaluate the proposed Riemannian metric to generate
energy-efficient, dynamic-aware, and collision-free motions of
a humanoid robot as geodesics and sequences thereof.

I. INTRODUCTION

Robots must be able to generate motions that satisfy
important constraints such as joint limits, self-collisions and
collisions with obstacles in the environment. To do so,
various approaches based on inverse kinematics (IK) [1]–
[5], or motion planning [6]–[9] have been proposed in the
literature. Alternatively, the motion generation problem can
be viewed through the lens of geometry by identifying robot
motions with geodesics, i.e., minimum-energy shortest paths,
on Riemannian manifolds. In particular, the configuration
space of a robot can be understood as a Riemannian mani-
fold whose geometric properties are entirely defined by the
robot dynamics via the so-called kinetic energy metric [10].
In this context, geodesic trajectories account for the non-
linearities arising from the intrinsic robot dynamics and can
be leveraged to generate coherent, energy-optimal motions
with respect to these dynamics [11]. The configuration space
manifold was also used to model human motions by conjec-
turing that point-to-point movements follow geodesics [12],
while complex movements result from sequences [13] and
compositions [14] thereof. Moreover, Sekimoto et al. [15]
showed that geodesic motions of robots with human-like
physical parameters resemble human motions. In our previ-
ous work [13], we proposed a motion transfer framework that
segments human arm motions into sequences of geodesics
and reproduces them as geodesics in the robot configura-
tion space. Each transferred geodesic is a minimum-energy

This work was supported by the Carl Zeiss Foundation through the JuBot
project. The authors are with the Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology, Karlsruhe, Germany. Correspondence
to: holgerhugoklein@gmail.com, {noemie.jaquier,
andre.meixner, asfour}@kit.edu.

trajectory accounting for the robot’s own inertial properties,
while the overall sequence conserves the main characteristics
of the original human motion.

While the kinetic energy metric disregards the influence
of external forces, the configuration space of robots evolving
in a potential field can be viewed as a Riemannian manifold
endowed with the Jacobi metric [16]. Robot motions cor-
responding to geodesics on this manifold are optimal with
respect to the total energy of the system. This representation
was notably leveraged to study periodic trajectories of con-
servative mechanical systems [17] and to design controllers
that select and transition between such trajectories [18].
Overall, viewing robot configuration spaces as Riemannian
manifolds opens the door to the generation of highly-efficient
motions by considering the intrinsic robot dynamics. How-
ever, the obtained trajectories do not consider joint limits,
self-collision, or obstacle avoidance.

In this paper, we propose to modify the configuration space
manifold so that geodesics generate collision-free trajectories
within joint limits, while remaining energy-optimal. This is
achieved by reshaping the underlying Riemannian metric
around no-go regions — i.e., robot configurations beyond
joint limits or resulting in collisions — so that the energy
required to pass through these regions becomes prohibitively
high. To do so, we design a class of region-avoiding metrics
based on barrier functions and provide a necessary and
sufficient condition for guaranteed strict region avoidance
(Sections IV-A and IV-B). Such metrics generate geodesic
accelerations generally pointing away from no-go regions.
To improve their efficiency, we propose a change of basis
resulting in region-avoiding metrics that generate direction-
dependent geodesic accelerations (Section IV-C). Namely,
the repelling acceleration is maximal, respectively minimal,
when the robot moves towards, respectively along, no-go
regions. While joint limit avoidance metrics are naturally
defined in joint space, self- and obstacle avoidance metrics
are easier to define in task space. To compute geodesics in
the configuration space manifold, we propose to pullback di-
rections to the obstacle from task space, so that the resulting
joint-space metric leads to the same direction-dependent ac-
celeration in task space (Section IV-D). Finally, we combine
the configuration space metric with regions-avoiding metrics
(Section IV-E) and generate energy-efficient, dynamic-aware,
and collision-free robot motions by following geodesics in
the corresponding manifold (Section V).

The contributions of this paper are threefold: (i) We
propose a class of direction-dependent Riemannian metrics
for strict region-avoidance; (ii) We provide pullback opera-



tions that conserve the properties of such region-avoiding
metrics; and (iii) We generate energy-efficient, dynamic-
aware robot motions as collision-free geodesics in a modified
configuration space manifold. We evaluate the ability of
our approach to stay within joint limits and to avoid self-
collisions and obstacles in various scenarios (Section VI).
A video of the experiments accompanies the paper and is
available at https://youtu.be/qT43XgYOlU0.

II. RELATED WORK

From early on, kinematic redundancy has been exploited
to introduce additional feasibility criteria such as joint limits
or obstacle avoidance in IK frameworks. This was achieved
by computing weighted least norm IK solutions [1] or by
resorting to nullspace-based task augmentation and task
priority strategies [2], [3]. Recent works [4], [5] incorporated
various feasibility criteria — including motion smoothness,
self- and obstacle collision avoidance — into IK solvers by
formulating IK as a multi-objective non-linear optimization
problem. In contrast to IK, motion planning algorithms are
explicitly concerned about finding a collision-free trajectory
between boundary points [6]. Such algorithms are generally
guaranteed to find a solution if one exists, and can be aug-
mented with an optimization phase to satisfy additional cri-
teria [7]. Other motion planning algorithms [8], [9] directly
optimize entire trajectories by minimizing multi-objective
costs including an obstacle avoidance term. However, IK and
motion planning algorithms are not straightforwardly appli-
cable on Riemannian manifolds with non-constant metric.

Several works proposed to generate robot motions as
geodesics on a Riemannian manifold. Obstacle avoidance
was achieved in [19], [20] by reshaping the identity metric
of the Euclidean end-effector space around obstacles, so
that they are naturally avoided by geodesics. Although we
follow a similar idea, our approach ensures that the behavior
of the robot is generally characterized by the configuration
space metric. Ratliff et al. [21] proposed to combine local
Riemannian policies encoding different robot behaviors. In
this case, the Riemannian metrics quantify the directional
importance of each local policy, which can be combined in
a common space via pullback operations [22]. Our approach
differs as we focus on reshaping a given metric, i.e., the
configuration space metric, to incorporate region avoidance
terms. Robot trajectories are then entirely determined by the
reshaped metric.

While the aforementioned approaches define the Rieman-
nian metric of interest manually, robot motions have also
been generated on learned stochastic Riemannian manifolds.
Such manifolds are obtained by endowing the latent space of
a latent variable model with a Riemannian metric reflecting
the support of the training data [23], [24] and geodesics
naturally avoid regions far from the data. Scannell et al. [25]
learned a Riemannian manifold reflecting the spatial distribu-
tion of transition dynamic modes of a controlled quadcopter.
Regions with turbulent modes are then avoided as a soft con-
straint by following geodesics on the learned manifold. Beik-
Mohammadi et al. [26] proposed to represent robotic skills in

a latent Riemannian manifold learned from demonstrations.
Trajectories resembling the demonstrations are then produced
as geodesics on the learned manifold. Following [27], the
authors reshaped the learned metric to avoid obstacles by
pulling back a task-space region-avoiding metric based on the
exponential barrier function. However, this metric results in
a soft constraint and does not guarantee collision avoidance.
In contrast, we introduce Riemannian metrics resulting in
strict region avoidance, whose properties are preserved by
pullback operations.

III. BACKGROUND
In this section, we introduce the mathematical tools needed

to generate robot motions as geodesics on Riemannian man-
ifolds. We refer the interested reader to, e.g., [28], [29], and
to [10] for in-depth introductions to Riemannian geometry,
and geometry of mechanical systems, respectively.

A. Riemannian Manifolds and Riemannian Metrics
A d-dimensional manifold M is a topological space,

which is locally Euclidean. In other words, each point in
M has a neighborhood that is homeomorphic to an open
subset of the d-dimensional Euclidean space Rd, also called a
chart. The manifold M is smooth if differentiable transitions
between charts can be defined. A tangent space TqM is
associated with each point q ∈ M and is formed by the
differentials at q to all curves on M passing through q. The
disjoint union of all tangent spaces TqM forms the tangent
bundle TM. A Riemannian manifold is a smooth manifold
equipped with a Riemannian metric, i.e., a smoothly-varying
inner product acting on TM. Given a choice of local coordi-
nates, the Riemannian metric is represented as a symmetric
positive-definite matrix G(q), which depends smoothly on
q ∈ M. The Riemannian metric leads to local, nonlinear
expressions of inner products and angles. Specifically, the
Riemannian inner product between two velocity vectors u,
v ∈ TqM at q ∈ M is given as

⟨u,v⟩q = ⟨u,G(q)v⟩ = uTG(q)v. (1)

The Riemannian norm is defined as ∥v∥G(q) =
√

⟨v,v⟩q .
Importantly, the Riemannian metric fully captures the geom-
etry of the manifold. Therefore, it also allows us to compute
shortest paths on M, as explained next.

B. Geodesics
Similarly to straight lines in Euclidean space, geodesics

are minimum-energy and minimum-length curves on Rie-
mannian manifolds. They follow from the application of the
Euler-Lagrange equations to the kinetic energy defined by
the Riemannian metric as

k =

∫
1

2
∥q̇(t)∥2G(q(t))dt. (2)

Geodesics solve the following system of second-order ordi-
nary differential equations (ODE)1

q̈i +
∑
jk

Γi
jkq̇j q̇k = 0, (3)

1For brevity, we omit the dependency of q on t when obvious.
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with Γi
jkthe Christoffel symbols of the second kind given by

Γi
jk =

1

2

∑
l

g−1
il

(
∂glj
∂qk

+
∂glk
∂qj

− ∂gjk
∂ql

)
,

and qk and gij denoting the k-th and i, j-th component of q
and G. In other words, geodesic trajectories are obtained by
applying the joint acceleration q̈(t) solution of Eq. (3) at each
configuration q(t) with velocity q̇(t) along the trajectory.
Notice that the velocity norm is constant along a geodesic,
i.e, ∥q̇(t)∥G(q(t)) = c.

C. The Configuration Space Manifold

The configuration space Q of a robot can be viewed as a
smooth manifold with a simple global chart. Points on this
manifold correspond to different joint configurations q ∈ Q.
The configuration manifold Q of mechanical systems can
be endowed with the kinetic-energy metric [10] or with the
Jacobi metric [16]. The kinetic-energy metric is equal to the
robot mass-inertia matrix M(q), while the Jacobi metric
additionally incorporates external potentials. Intuitively, both
metrics curves the space so that the configuration manifold
accounts for the robot nonlinear inertial properties. In the
case of the configuration space manifold, the geodesic equa-
tion (3) corresponds to the standard equation of motion

M(q)q̈ +C(q, q̇)q̇ + U(q) = 0 (4)

with U(q) = 0 for the kinetic-energy metric. Therefore,
geodesics correspond to passive trajectories of the system
and thus intrinsically accounts for its dynamic properties.

IV. RIEMANNIAN METRICS FOR STRICT REGION
AVOIDANCE

In the following, we assume without loss of generality
that the configuration manifold is endowed with the kinetic-
energy metric M . Robot motions generated by geodesics are
energy-optimal with respect to the robot dynamics. However,
they overlook joint limits and do not avoid self-collisions
and obstacles in the workspace. Thus, we introduce a class
of Riemannian metrics for strict region avoidance and use
them to reshape the metric M around no-go regions and
obtain a collision-free metric G.

A. The 1-D case: Barrier Functions For Region Avoidance

We define the collision-free metric G as a combination of
the kinetic-energy metric M with region-avoiding metrics
Ga. Intuitively, region-avoiding metrics are designed so that
geodesics q(t) ∈ Q passing through the corresponding
region Qa ⊂ Q have prohibitively high length. Moreover,
the metric Ga should not influence the geodesics away from
the avoided region. Therefore, for strict region avoidance, the
collision-free metric G(q) should satisfy

∥q̇∥G(q) =

{
∞ if q ⊂ Qa,

∥q̇∥M(q) otherwise.
(5)

In this paper, we propose to build region-avoiding metrics
based on the well-studied family of barrier functions [30].

Barrier functions b : Q → R become very large near a given
point qa and vanish everywhere else, thus may satisfy —
in the 1-D case — the requirements for Ga. Notice that,
due to the aforementioned properties, barrier functions are
also often used as avoidance costs when optimizing robot
trajectories [4], [5].

Here, we consider the following three functions:

• the exponential barrier, bexp(q) = σ exp
(
− (q−qa)

2

λ2

)
,

• the logarithmic barrier, blog(q) = −σ log(q − qa),
• the inverse barrier, binv(q) =

σ
q−qa

,

where σ is a scaling factor and λ determines the width of
the exponential barrier. To reason about the effect of the
different barrier functions on geodesics, we first assume a
1-D configuration space manifold Q ≡ R with metric m(q)
and a point qa to avoid. In this case, we can construct a
simple metric g(q) = m(q) + b(q) resulting in the norm

∥q̇∥g(q) =
√(

m(q) + b(q)
)
q̇2. (6)

Away from qa, the barrier function vanishes, i.e., b(q) → 0,
and ∥q̇∥g(q) = ∥q̇∥m(q). This means that geodesics are en-
tirely characterized by m(q) away from qa, i.e., g(q) fulfills
the second requirement of Eq. 5. The first requirement, i.e.,
∥q̇∥g(q) → ∞ if q = qa, is satisfied for all velocities q̇ if
and only if b(q) → ∞ when q = qa. Notice that we can
observe the effect of such a metric on geodesics. Since the
velocity norm is constant along a geodesic, i.e., ∥q̇∥g(q) = c
(see Section III-B), the geodesic velocity is given as

|q̇| = c√(
m(q) + b(q)

) , (7)

using Eq. (6). Therefore, when b(q) → ∞, the velocity is
q̇ = 0 and the geodesic cannot cross the no-go region. In
other words, strict region avoidance is guaranteed if and only
if the barrier function goes to infinity in the region that should
be avoided. Therefore, the inverse and logarithmic barrier
results in hard collision-avoidance constraints. Although the
exponential barrier increases the length of geodesics around
no-go regions, it only results in a soft constraint. This implies
that geodesics with high-enough velocity norm can cross no-
go regions when using the exponential barrier.

To gain additional insights about geodesics generated
by g(q), we study the geodesic acceleration around no-
go regions. For simplicity and without loss of generality,
we assume a constant metric m(q) = 1 and a no-go
region qa = 0. In one dimension, the geodesic equation (3)
simplifies as

q̈ = −Γq̇2 with Γ =
1

2

b′(q)

1 + b(q)
, (8)

and b′(q) = ∂b(q)
∂q . This shows that the geodesic acceler-

ation does not only depends on the metric, but rather on
the relationship between the metric and its gradient. The
geodesic accelerations obtained from g(q) with different



barrier functions are

q̈exp =
q

λ2

σ exp
(
q2

λ2

)
+ λ2

q̇2, (9)

q̈log =
1

2

σ

q − σq log(q)
q̇2, (10)

q̈inv =
1

2q
q̇2. (11)

We observe that the metrics based on inverse and logarithmic
barriers generate infinite accelerations for all velocities when
q → qa = 0. Therefore, the geodesics approaching qa
not only have large lengths but also accelerate away from
the barrier. Instead, the exponential barrier generates no
acceleration when q = qa = 0 and geodesics may pass
through no-go regions. Notice that the metric based on the
logarithmic barrier also produces infinite accelerations when
σ log(q) = 1, i.e., it also influences geodesics around q =
log−1(σ−1). Therefore, the inverse barrier is the most suited
to build 1-D region-avoiding Riemannian metrics satisfying
Eq. (5). Powers of this barrier, i.e., b(q) = σ

(q−qa)n
, have

similar properties and may also be used to build such metrics.

B. From Barrier Functions to Region-Avoiding Metrics

After discussing 1-dimensional region-avoiding metrics
based on barrier functions, we aim at generalizing such
metrics to avoid no-go regions in d-dimensional spaces Q.
We define v = q−qa as the vector pointing from the current
joint angles q to the closest point qa ∈ Qa. Barrier functions
are then computed using the Euclidean norm of v as b(∥v∥)
and a collision-free metric G(q) can be constructed as

G(q) = M(q) +Ga(q) with Ga(q) = b(∥v∥) Id, (12)

Following the same argument as in the 1-D case, it can
easily be shown that the metric G(q) guarantees strict region
avoidance if and only if the barrier function b goes to infinity
for q ∈ Qa. Note that a similar metric was proposed in [26]
based on the exponential barrier in Euclidean space, i.e.,
M(q) = Id. However, as already stated, the exponential
barrier does not provide strict collision avoidance.

As previously, we are interested in the influence of the
metric (12) on geodesics around the no-go region Qa and
study the corresponding geodesic acceleration. For simplic-
ity, we assume Q ≡ Rd for which M(q) = Id. Fig-
ures 1a- 1b display the geodesic acceleration produced by
G for geodesics approaching Qa from different directions
v and with different velocities q̇. We observe that, in the
multidimensional case, the generated geodesic acceleration
depends on the direction of q̇. Moreover, when v is parallel
to a canonical basis vector, e.g., v = (1, 0)T in Figure 1a,
the geodesic acceleration points in the direction −v with
a magnitude proportional to ⟨v, q̇⟩q . This is the optimal
behavior as (i) the acceleration is maximal when q̇ is aligned
with v, i.e., for geodesics traveling towards Qa, and (ii)
the acceleration is zero when q̇ is orthogonal to v, i.e., the
metric does not influence geodesics traveling along the no-
go region. However, as shown in Figure 1b, this no longer
applies when v is not a basis vector, i.e., geodesics (including

(a) v as basis vector (b) No basis change (c) With basis change

Fig. 1: Geodesic accelerations ( ) generated by different region-
avoiding metrics Ga in Q and acting on planar geodesics with
different velocities ( ). The vector v ( ) indicates the direction
from the current geodesic position to Qa.

those traveling along Qa) are irregularly accelerated away
from Qa. This issue is alleviated by changing the basis of
the metric, as explained next.

C. Efficient Region Avoidance via Basis Change

To build region-avoiding metrics that systematically gen-
erate geodesic accelerations away from Qa, we first study
the geodesic equation (3) in the case where v is parallel to a
canonical basis vector. Namely, as Ga is a diagonal matrix,
its derivative is

∂(ga)ij
∂ql

=

{
vlb

′(∥v∥)
∥v∥ if i = j,

0 otherwise.

Moreover, if v is aligned with the m-th canonical basis
vector, we have v = (0, . . . , vm, . . . , 0)T, with vm the m-th
component of v. In this case, the derivative is

∂(ga)ij
∂ql

=

{
b′(∥v∥) = b′(vm) if i = j and l = m,

0 otherwise.

From this it follows that the only non-zero component of the
geodesic acceleration is

q̈m = −1

2

b′(vm)

1 + b(vm)
q̇2m, (13)

i.e., the geodesic acceleration points in the direction −v.
Note that q̈m is identical to the geodesic acceleration com-
puted in the 1-D case, see Eq. (8). To generate the same
behaviour for any direction v, we propose to define Ga via
a change of basis. To do so, we first generate a linearly
independent system of vectors {v, r2, ..., rd}, and use the
Gram-Schmidt algorithm to turn this system into an orthonor-
mal basis B = (b1, ..., bd), where b1 = v/∥v∥. We then
construct the metric GB

a in this basis following Eq. (12).
Finally, we transform the components of the metric into the
canonical basis, so that Ga = BGB

a BT. Figure 1c shows
an example of the resulting geodesic accelerations.

D. Region Avoidance via Pullback Operations

In the previous sections, we assumed identical domains
Q for the region-avoiding and kinetic-energy metrics. How-
ever, avoidance regions corresponding to self-collision and
obstacles are naturally encoded as positions in the robot task
space. Here, we aim at designing a metric G generating
geodesics q(t) ⊂ Q which avoid collisions in task space.
In this case, obstacles are defined as region in R3, and



(a) Pullback metric (b) Pullback direction

Fig. 2: Geodesic accelerations generated by different pullback
operations from R3 to Q and acting on geodesics with different
velocities. The resulting accelerations ( ) and the velocities ( )
are represented in task space. The vector v ( ) indicates the
direction from the current position to the obstacle in R3.

vx = x − xa is a vector from the closest point x ∈ R3

on the robot’s collision geometry to an obstacle xa ∈ R3.
Region-avoiding metrics GB

a (x) = b(∥vx∥)I3 can then
be defined in R3 and pulled back into the configuration space
manifold Q using the forward kinematic function f similarly
as in [27] and [26]. Namely, given a smooth function f :
Q → M, a metric GM on M is pulled back onto Q as

GQ = JT
f GMJf , (14)

with Jf the Jacobian of f , and M ≡ R3 in our case.
However, despite defining GB

a (x) as in Section IV-C, the
resulting pullback metric does not generate geodesic accel-
erations that systematically point away from the obstacle in
task space (see Figure 2a). Therefore, we propose to instead
pull back vx ∈ R3 using the Jacobian pseudo inverse J† as

v = J†vx, (15)

and to construct Ga directly in joint space using Eq. 12. This
can be justified by the fact that, in theory, we could infer all
qa ∈ Q for which a collision occurs and construct v = q−qa
directly in Q. The pullback (15) can be seen as a low-cost
estimation of v. As shown in Figure 2b, the resulting metric
generates geodesic accelerations roughly aligned with −vx

in task space, which are maximal when the velocity ẋ = Jq̇
is aligned with vx and zero when ẋ is orthogonal to vx.

E. Combining Riemannian Metrics
Using the region-avoiding metrics defined in Sections IV-

B- IV-D, we define the overall metric G as the sum

G(q) = M(q) +Gj(q) +Gs(q) +Go(q), (16)

where Gj is a diagonal metric with gii = b(qℓi ) ensur-
ing that geodesics stay within the joint limits {qℓi}di=1,
while Gs and Go are self-collision and obstacle avoidance
metrics defined from the pullback direction in task space
(see Section IV-D). As the resulting geodesics are energy-
minimizing with respect to the sum of metrics, they combine
their different requirements. Moreover, as the influence of
our region-avoiding metrics vanishes away from joint limits
and obstacles thanks to the properties of barrier functions,
the geodesics are characterized by the kinetic-energy metric
away from no-go regions. Therefore, the metric (16) gen-
erates geodesics leading to energy-efficient, dynamic-aware,
and collision-free robot motions. The computation of such
geodesics is detailed next.

(a) Kinetic-energy metric M (b) Collision-free metric G

Fig. 3: Geodesics of a 2-DoFs planar robot. (a) Geodesics approx-
imated as cubic splines ( ) closely resembles solutions of the
geodesic equation ( ). (b) Geodesics given by G avoid the no-go
region ( ), while maintaining the shape given by M .

V. GEODESIC COMPUTATION
Given the collision-free metric defined in Eq. (16), we

aim at computing a geodesic connecting an initial to a final
joint configuration. This corresponds to solving the geodesic
equation (3) with boundary conditions given by the initial
and final configurations qi, qf ∈ Q. However, solving such
boundary value problem for a system of coupled ODEs is no-
toriously hard. This is further exacerbated by the dimension
of the robot configuration space, which is often d ≥ 6 even
for simple manipulators. Instead, we approximate geodesics
q(t) by cubic splines ζ(t, qc) with fixed boundary points
given by the initial and final configurations qi, qf and where
qc = {qck}Kk=1 defines K control points qck ∈ Q. These
control points are optimized to minimize the (discretized)
Riemannian kinetic energy (2) along ζ

qc = argmin
qc

∫
1

2
∥ζ̇(t, qc)∥2G(ζ(t,qc))

dt, (17)

so that resulting splines resemble geodesics (see Figure 3a).
This approach was also used in [26] and is similar in spirit

to the relaxation methods used to compute geodesics in [17],
[20]. It is advantageous as it is guaranteed to find a trajectory
between the given initial and final conditions. For instance,
it avoids geodesics that stop in front of no-go regions due to
local minima. Instead, the obtained trajectories wraps around
obstacles, while being as close as possible to geodesics by
minimizing the curve energy (see Figure 3). In Section VI,
such geodesics are computed for d = 8 in less than 0.5s using
Python code on a desktop with 3.70GHz ×24 CPU and 64
GiB RAM. Notice that the kinetic energy of strict region-
avoiding metrics G goes to infinity in no-go regions, which
are thus avoided by geodesics and spline approximations ζ
obtained via solutions of (17).

VI. EXPERIMENTS
We evaluate our approach on the humanoid robot

ARMAR-6 [31]. We approximated the robot’s collision ge-
ometry with capsules and boxes and used signed distance
functions (SDF) to compute the direction from the closest
point on the robot to a no-go region (leading to self-collision
or to a collision with an obstacle) in task space. In the
following, we used σ = 1 for the inverse barrier, and fine-
tuned the exponential barrier parameters for each experiment.



TABLE I: Percentage of robot motions exceeding joint limits and
resulting in self-collisions for different Riemannian metrics.

% out of joint limits
M G, bexp G, binv

reaching 0 0 0

throwing 20.7 20.3 0

pointing 15.2 15.8 0

waving (short) 99.1 99.1 0

waving (long) 46.8 47.6 0

arms crossing 100 100 0

% with self-collisions
M G, bexp G, binv

reaching 0 0 0

throwing 2.9 3.2 0

pointing 0 2.3 0

waving (short) 24.7 19.9 0

waving (long) 0 0 0

arms crossing 54 65 0

A. Joint Limits and Self-Collision Avoidance

We first evaluate our approach to avoid the robot’s joint
limits and self-collisions during motion generation. We con-
sider robot motions obtained by transferring human move-
ments described as sequences of geodesics in the human con-
figuration space to the robot configuration space. Here, we
use 5 human movements from the KIT whole-body human
motion database [32]2, namely one reaching, one throwing,
one pointing (successively up, horizontally, and down), and
two waving (in greeting) motions3. As all these movements
mostly involve the joints of one arm, we restrict the transfer
to ARMAR-6’s 8-DoFs left or right arm. We transfer these
motions to ARMAR-6 by leveraging the Riemannian transfer
framework introduced in our previous work [13]. Namely,
each motion is first mapped onto the Master Motor Map
(MMM) model [32], which is a reference model of the
human body, and segmented into a sequence of geodesics
using Riemannian motion segmentation. The key points of
the motion, given by hand pose at the start and the end
of each geodesic, are mapped from the human task space
to the robot task space. In practice, the hand position is
scaled proportionally to the total arm length. Each extracted
human geodesic is then reproduced as a geodesic in the robot
configuration manifold. Given the desired initial and final
hand poses xg

i ,x
g
f of the g-th geodesic, we aim at finding a

geodesic q(t) in the robot configuration manifold Q whose
boundary conditions qg

i , q
g
f ∈ Q satisfy f(qg

i ) = xg
i and

f(qg
f ) = xg

f . As the geodesics are followed sequentially,
we assume that the initial condition f(qg

i ) = xg
i is already

satisfied. Therefore, we find a final configuration satisfying
f(qg

f ) = xg
f using, e.g., IK, and compute the corresponding

geodesic as described in Section V. Following this approach,
each transferred geodesic constitutes a minimum-energy tra-
jectory accounting for the robot’s own inertial properties,
while the overall sequence conserves the main characteristics
of the original human motion.

2https://motion-database.humanoids.kit.edu/
3Motions identified in the database as take book from shelf right arm 01,

throw right01, point at right03, wave left01, and waving neutral04.

(a) Pointing motion (b) Waving (long) motion

Fig. 4: Transfer of human motions to ARMAR-6. The trajectories
of the clavicle (qC ), shoulder (qS,·), elbow (qE,·), and wrist (qW,·)
joints are depicted along with joint limits ( ). The trajectories
are obtained using the Riemannian model with the kinetic-energy
metric ( ), and the collision-free metric based on the exponential
( ) and on the inverse ( ) barriers.

We compare the transferred robot motions obtained by
endowing the robot configuration space with the kinetic-
energy metric M , and the collision-free metric G (12) using
region-avoiding metrics based on the exponential and inverse
barriers bexp and binv. As shown in Table I, the motions
generated using the kinetic-energy metric exceed joint limits
and results in self-collisions along the trajectory. Note that
this is the expected behavior, as neither joint limits nor
collisions are considered by this metric. In contrast, the
proposed inverse-barrier metric reliably generates feasible
robot motions. Moreover, we observe that the exponential-
barrier metric barely reduces the proportion of joint limits
excesses and of self-collisions. As explained in Section IV,
this is due to the fact that exponential barriers do not reach
infinite values in no-go regions, and thus cannot guarantee
that they are strictly avoided by geodesics. Importantly,
similar behaviors are observed for inverse- and exponential-
barrier metrics independently of the values of the parameters
σ and λ. Figure 4 shows the trajectories of the 8 joints
of the right arm. We observe that trajectories generated by
both collision-free metrics closely resemble those generated
by the kinetic-energy metric. In other words, the inverse
barriers modify the kinetic-energy metric so that geodesics
stay within the robot’s joint limits but are not influenced
away from no-go regions. This is particularly visible for the
wrist joint qW,x. Joint limits are not respected by the expo-
nential barriers. Transitions between geodesics may lead to
sudden accelerations which can be smoothed out by encoding
transitions with larger numbers of smaller geodesics [13].

As most transferred motions only result in few self-
collisions, including when generated solely with the kinetic-
energy metric, we evaluate our approach in a task that

https://motion-database.humanoids.kit.edu/


Fig. 5: Arms crossing motion realized by following a geodesic
generated from the inverse-barrier-based collision-free metric G.

(a) Hand motions. (b) Inverse-barrier-based collision-free geodesic.

Fig. 6: Geodesic trajectories generated by different Riemannian
metric to avoid a table. (a) The hand trajectories obtained following
geodesics using the kinetic-energy metric ( ), and the collision-
free metric based on the exponential ( ) and on the inverse ( )
barriers. The trajectory obtained with CollisionIK is displayed as a
baseline ( ). (b) Snapshots of the resulting robot motion.

explicitly requires efficient self-collision avoidance. To do
so, we consider an arms crossing motion, where the robot
follows a single geodesic to cross its right arm over the left
one. Figure 5 shows snapshots of the motion executed using
the collision-free metric G computed using inverse barriers.
We observe that the resulting trajectory successfully avoids
collisions between the two robot arms. In particular, the
clavicle and elbow joints are leveraged so that the right arm
rotates around the left hand before reaching the final crossed-
arm posture. As shown in Table I, geodesics generated by
the kinetic-energy and exponential-barrier metrics result in a
high proportion of collisions between both robot arms.

B. Obstacle Avoidance

Next, we evaluate our approach to generate trajectories
avoiding obstacles in task space. To do so, we consider a
scenario where the robot’s hand is initially placed below
a table and should be placed at a final location above the
table. The corresponding motion is achieved by following
a single geodesic. We compare the geodesics obtained by
endowing the robot configuration space with the kinetic-
energy metric M , and the collision-free metric G (12) using
region-avoiding metrics based on the exponential and inverse
barriers bexp and binv. As shown in Table II and in Figure 6a,
the geodesic generated by the kinetic-energy metric passes
through the table, thus resulting in a high proportion of
collisions. This is expected, as obstacles are not considered
by the kinetic-energy metric. As for joint limits and self-
collision avoidance, the exponential-barrier metric does not
avoid the obstacle. This behavior occurs independently of
the values of the barrier parameters. As shown in Figure 6a,
the resulting geodesic slightly diverges from the kinetic-
energy geodesic and tends towards the border of the table.
However, it does not suffice to avoid the collision. Instead,
the inverse-barrier metric generates a geodesic around the
table, successfully avoiding collisions. Table II-bottom com-
pares the Riemannian length of the obtained trajectories. The
lengths are all computed with respect to the kinetic-energy

TABLE II: Percentage of robot motions colliding with the obstacle
and motion length for different Riemannian metrics. Motion lengths
are computed with respect to the kinetic-energy metric.

% with obs. collision
M G, bexp G, binv C-IK

table 64 50 0 0

waving (long) with obs. 35.2 37.8 0 0

Riemannian length ℓM
M G, bexp G, binv C-IK

table 1.20 1.40 3.01 6.14

waving (long) with obs. 12.54 13.47 21.35 N/A

metric. As a baseline, we also consider a trajectory generated
using CollisionIK [5] for which the final hand pose was
given as goal pose and whose cost weights were adapted
to our scenario. The shortest trajectory was generated by the
kinetic inertia metric M . This is expected, as it corresponds
to a geodesic, i.e., a shortest path, in the corresponding
manifold. Moreover, the trajectory generated by the inverse-
barrier metric is shorter than the trajectory generated by
CollisionIK, i.e., closer to a geodesic with respect to M .

To evaluate the ability of our proposed metric to avoid
obstacles along longer trajectories, we then consider the long
waving motion transferred in the previous section augmented
with an obstacle. As in the previous section, the trajectories
are generated as sequences of geodesics. As shown in Fig-
ure 7 and Table II, the geodesics generated by the inverse-
barrier metric successfully avoid the obstacle, while main-
taining the general shape of the waving motion. Interestingly,
part of the geodesics generated by the exponential-barrier
metric successfully avoid the obstacle (see Figure 7a). This
confirms that the exponential barrier encourages geodesics
to avoid no-go regions. However, as previously mentioned,
strict avoidance is not guaranteed. As for the around table
motion, the shortest trajectory is generated by the kinetic-
energy metric. Although the inverse-barrier metric generates
longer trajectories with respect to the kinetic-energy metric,
its kinetic-energy metric component encourages trajectories
with low energy with respect to the kinetic-energy metric.
This results in trajectories passing below the obstacle to avoid
it. CollisionIK was prone to local minima in this scenario and
did not always find a way from one side of the obstacle to the
other (see Figure 7a). Therefore, in contrast to our approach,
it could not achieve the entire waving motion.

VII. CONCLUSION

This paper studied region-avoiding metrics allowing the
generation collision-free robot motions as geodesics on a
Riemannian manifold. Specifically, we proposed to modify
the Riemannian metric of the configuration space manifold to
incorporate additional metric terms guaranteeing joint limits,
self-, and obstacle avoidance. To do so, we introduced a class
of Riemannian metrics based on barrier functions and derived
a sufficient and necessary condition which guarantees that
geodesics will avoid given regions. This condition is satisfied
by inverse barriers, which guarantee strict region avoidance
as opposed to exponential barriers. We showed how these
metrics are adapted to consistently generate geodesic accel-



(a) Hand motions. (b) Inverse-barrier-based collision-free trajectory.

Fig. 7: Sequences of geodesics generated by different Riemannian
metrics to avoid an obstacle during waving. (a) Hand trajectories
obtained by following geodesics using the kinetic-energy metric
( ), and the collision-free metric with exponential ( ) and inverse
( ) barriers. The CollisionIK trajectory is displayed as a baseline
( ). (b) Snapshots of the resulting robot motion.

erations away from no-go regions, while having no influence
on geodesics traveling along these regions.

Our experiments showed that the proposed inverse-barrier
Riemannian metric generates geodesics corresponding to
collision-free trajectories within joint limits. Moreover, the
resulting trajectories are close to geodesics with respect to
the kinetic-energy metric, and thus result in dynamic-aware
and energy-efficient robot motions. Importantly, the proposed
region-avoiding metrics are not limited to the configuration
space manifold, but can, in principle, be applied to any other
Riemannian manifold. Moreover, other barrier functions,
e.g., with compact support, satisfying the derived sufficient
and necessary condition may also be considered. Although
our metrics generate geodesic acceleration depending on
the direction to a no-go region, they do not differentiate
between geodesics approaching or going away from the given
region. This limitation comes from the fact that Rieman-
nian metrics are functions of positions on the manifold,
while differentiating between these two types of trajectories
requires taking velocities into account. Alternative metrics
considering velocities will be explored as future work.
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